首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonolysis of chlorobenzene in Fenton-type aqueous systems   总被引:4,自引:0,他引:4  
The influence of ultrasounds (200 kHz frequency) on the decomposition of chlorobenzene (CB) in a water solution (around 100 ppm concentration) containing iron or palladium sulfates was investigated. The intermediates of the sonolysis were identified, thus allowing a deeper insight into the degradation mechanism. It was established that CB degradation starts by pyrolysis inside the cavitation bubbles. The initial sonolysis product is benzene, formed in a reaction occurring outside the cavitation from phenyl radicals and the hydrogen atoms sonolytically generated from the water. Polyphenols as products of the CB sonochemical degradation are reported for the first time. The palladium salt was found to be a useful and sensitive indicator for differentiating the sites and mechanisms of the product formation. An alternative mechanism for the CB sonolysis is advanced, explaining the formation of phenols, polyphenols, chlorophenols and benzene.  相似文献   

2.
Sonolysis of chlorobenzene in aqueous solution: organic intermediates   总被引:6,自引:0,他引:6  
The ultrasonic degradation of 1.72 mM chlorobenzene was investigated. The sonolysis of chlorobenzene followed first-order kinetics. The influence of the pH of the aqueous solution and the effect of the saturating gás, air or argon, was measured. No pH effect was noticed, and saturation with the monoatomic argon accelerated the degradation. Furthermore, the addition of the radical scavenger benzoate demonstrated that no significant degradation took place in the bulk solution. For air-saturated solutions, the following organic degradation products were identified: methane, acetylene, butenyne, butadiyne, benzene, chlorophenols, phenylacetylene and other chlorinated and non-chlorinated monocyclic and dicyclic hydrocarbons. For argon-saturated solutions, the same products were found, except for the chlorophenols. The presence of the chlorophenols in the case of air-saturation only demonstrated the interaction between the radicals formed and oxygen, and no direct degradation by OH. radicals. The kinetics of several organic degradation products and chloride were determined for the sonolysis of air- and argon-saturated solutions.  相似文献   

3.
4.
Pharmaceutical products are often present in wastewater treatment effluents, rivers, lakes and, more rarely, in groundwater. The advanced oxidation methods, like ultrasound, find a promising future in the area of wastewater treatment. The aim of this paper is to evaluate the influence of several parameters of the ultrasound process on the degradation of paracetamol, a widely used non-steroidal anti-inflammatory recalcitrant drug found in water and levodopa, the most frequently prescribed drug for the treatment of Parkinson disease. Experiments were carried out at 574, 860 and 1134 kHz of ultrasonic frequency with horn-type sonicator and actual power values of 9, 17, 22 and 32 W at 20 °C. Initial concentrations of 25, 50, 100 and 150 mg L?1 of both products were used. Treatment efficiency was assessed following changes in pharmaceuticals concentration and chemical oxygen demand.The sonochemical degradation of both products follows a pseudo-first-order reaction kinetics. Complete removal of pharmaceuticals was achieved in some cases but some dissolved organic carbon remains in solution showing that long lived intermediates were recalcitrant to ultrasound irradiation. Pollutants conversion and COD removal were found to decrease with increasing the initial solute concentration and decreasing power. The best results were obtained with 574 kHz frequency. Investigations using 1-butanol as radical scavenger and H2O2 as promoter revealed that pollutants degradation proceeds principally through radical reactions, although some differences were observed between both molecules. Addition of H2O2 had a positive effect on degradation rate, but the optimum concentration of hydrogen peroxide depends on the pollutant.  相似文献   

5.
To examine the reaction rates of sonochemical degradation of aqueous phase carbon tetrachloride, trichloroethylene and 1,2,3-trichloropropane at various temperatures, power intensities, and saturating gases, the batch tests were carried out. The degradations of chlorinated hydrocarbons were analyzed as pseudo first order reactions and their reaction rate constants were in the range of 10(-1)-10(-3)/min. The reaction was fast at the low temperature with higher power intensity. Also, the reaction went fast with the saturating gas with high specific heat ratio, high solubility and low thermal conductivity. The main mechanism of destruction of chemicals was believed the thermal combustion in the bubble.  相似文献   

6.
The objective of this work was to contribute to the mechanism of the sonolytic and radiolytic reactions leading in deaerated aqueous solutions of sugars to products by radical-radical combination. For this purpose glyceraldehyde, the first homologue of the series of aldoses, was investigated. Primary glyceraldehyde radicals are produced by abstraction of carbon-bonded hydrogen atoms by sonolytic or radiolytic H and OH radicals. Secondary glyceraldehyde radicals are derived from primary radicals by elimination of water. Both kinds of radicals were found to participate in dimer production.  相似文献   

7.
Sonication of aqueous solutions of chlorobenzene   总被引:6,自引:0,他引:6  
Sonication at two frequencies (20 and 900 kHz) was carried out on dilute (220 ppm) aqueous solutions of chlorobenzene. The formation of chloride ions was followed using ion chromatography. The solutions became more colored with time; the absorbance maximum was around 270 nm. Some of the compounds remaining in the solution could be identified; they were chlorinated phenols, chloronaphthalene, mono and dichlorobiphenyls, etc. At the same acoustic power, the rate of chloride formation with 20 kHz ultrasound was greater when a probe with a larger tip area was used, but significantly less than the rate with 900 kHz. The use of ultrasound for conversion of chlorine in organic compounds in water to chloride can thus be performed more efficiently using a higher frequency and with a lower intensity (power per area). There is, however, a possibility that the toxicity of the aqueous solution is increased by such treatment.  相似文献   

8.
Sonolysis of aqueous 4-nitrophenol at low and high pH   总被引:11,自引:0,他引:11  
The sonolysis of 4-nitrophenol in argon-saturated aqueous solution has been studied at 321 kHz. In order to evaluate separately the effect of OH radicals that are formed in the cavitational bubble and part of which react in the aqueous phase with this substrate, radiolytic studies in N2O-saturated solutions were carried out for comparison. A detailed product study of the sonolysis of 4-nitrophenol solutions shows that at pH 10, where 4-nitrophenol is deprotonated (pKa = 7.1), its sonolytic degradation is fully accounted for by OH-radical-induced reactions in the aqueous phase. At this pH, the sonolytic yield of H2O2 resulting from OH radical recombination in the solution, measured as a function of the 4-nitrophenol concentration, is reduced in line with the scavenging capacity of the 4-nitrophenolate. In contrast, at pH 4 the formation of H2O2 is already fully suppressed when the solution is 7 x 10(-4) mol dm-3 in 4-nitrophenol, and oxidative-pyrolytic degradation predominates, as exemplified by the large yields of CO and CO2 which are accompanied by a large H2 yield. The basis of this difference in behavior is a hydrophobic enrichment of 4-nitrophenol (which is undissociated at pH 4) at the interface of the cavitational bubble by a factor of about 80. The pH dependence of the yields of the pyrolytic products reflects the hydrolytic equilibrium concentration of 4-nitrophenol. The paper also demonstrates that the complexity of this sonochemical system precludes its use a gauge to determine the temperature in the interior of the cavitational bubble.  相似文献   

9.
Although most papers in the field of sonochemical degradation of volatile organics in aqueous media describe experiments at the millimolar concentration range, this study focuses on the degradation kinetics of chlorobenzene (CB) and trichloroethylene (TCE) in the micromolar range. It was found that the reaction kinetics increase with decreasing initial substrate concentrations. For example, the pseudo-first-order reaction rate constant of CB increases by a factor of 14.3, if the initial concentration drops from 3440 to 1 microM. Previous work in the millimolar range has shown that the degradation of these volatiles is mainly due to pyrolytic reactions. The enhancement of the reaction kinetics at lower concentrations, in this work, could no longer be explained by this mechanism, even by taking into account the effect of the concentration of the solutes on the reaction temperature. Therefore, a new model was developed, incorporating gas phase OH radical induced degradation, next to pyrolysis. The model, fitting the experimental results, illustrated that at micromolar concentrations the OH radical induced degradation becomes significant. Simulations showed that at initial concentrations of CB > 1000 microM degradation is due to pyrolysis for over 99.97%, but it was also demonstrated that at concentrations between 1 and 5 microM, the OH radical mechanism contributed 48.5% of the total degradation.  相似文献   

10.
The sonolysis of 4-chlorophenol (4-CP) in O2-saturated aqueous solutions is investigated for a variety of operating conditions with the loss of 4-CP from solution following pseudo-first-order reaction kinetics. Hydroquinone (HQ) and 4-chlorocatechol (4-CC) are the predominant intermediates which are degraded on extended ultrasonic irradiation. The final products are identified as Cl-, CO2, CO, and HCO2H. The rate of 4-CP degradation is dependent on the initial 4-CP concentration with an essentially linear increase in degradation rate at low initial 4-CP concentrations but with a plateauing in the rate increase observed at high reactant concentrations. The results obtained indicate that degradation takes place in the solution bulk at low reactant concentrations while at higher concentrations degradation occurs predominantly at the gas bubble-liquid interface. The aqueous temperature has a significant effect on the reaction rate. At low frequency (20 kHz) a lower liquid temperature favours the sonochemical degradation of 4-CP while at high frequency (500 kHz) the rate of 4-CP degradation is minimally perturbed with a slight optimum at around 40 degrees C. The rate of 4-CP degradation is frequency dependent with maximum rate of degradation occurring (of the frequencies studied) at 200 kHz.  相似文献   

11.
The sonolysis of surfactants (such as sodium dodecylbenzenesulfonate (DBS), sodium dodecylsulfate (SDS), and polyethylene glycol monostearate), sodium 4-toluenesulfonate (STS), and 1-hexanol in aqueous solutions was investigated under an argon atmosphere with ultrasound of 200 kHz in order to compare the scavenging efficiency of the hydroxyl radical and the accumulation in the gas-liquid interfacial region of the cavitation bubbles. The degradation rate of the solute follows the order 1-hexanol > DBS and SDS > STS. The scavenging efficiency of the hydroxyl radical by non-volatile surfactants was much greater than that of the non-volatile and hydrophilic solute (e.g., STS). The surfactant was accumulated in a relatively high ratio in the interfacial region. The degradation of surfactants occurred by reaction with the hydroxyl radical and also by pyrolysis at high temperature. On the other hand, STS, due to its non-volatile and hydrophilic properties, was principally present in the bulk solution and the degradation by pyrolysis was not observed at the investigated concentration ranges.  相似文献   

12.
The photosonolysis of oxalic acid was carried out in an Ar atmosphere. The detectable products of sonolysis were CO2, CO, H2, and H2O2. The yield of CO2 was higher than that for the sum of sonolysis and photolysis reactions. Namely, a synergistic effect was observed during simultaneous irradiations of 200 kHz ultrasound and Xe lamp. The degradation of oxalic acid was promoted by active species such as H2O2 produced from water by sonolysis. An oxalic acid–H2O2 complex is likely to be present in the solution, but could not be detected. The effects of not only the photo-irradiation but also the thermal or incident energy during Xe lamp illumination were also considered.  相似文献   

13.
The kinetics of metal beta-diketonates sonolysis was studied in hexadecane solutions using a UV/VIS spectrophotometric technique. The following complexes were prepared and studied: Cu(HFAA)(2), Cu(DPM)(2), Fe(ACAC)(3), Ni(DPM)(2), Er(DPM)(3), Nd(DPM)(3), Th(DPM)(4), UO(2)(BTFA)(2).TOPO, and Np(HFAA)(4), where HHFAA is hexafluoroacetylacetone, HDPM is dipivaloylmethane, HACAC is acetylacetone, HBTFA is benzoyltrifluoroacetone, and TOPO is trioctylphosphine oxide. Sonolysis was performed under the following conditions: ultrasonic frequency 22 kHz, intensity of ultrasound 3-5 Wcm(-2), temperature 70-92 degrees C, Ar atmosphere. The kinetic behavior of the studied complexes are interpreted using a two-site model of the sonochemical processes. In the case of metal beta-diketonates with high vapor pressure the sonochemical reactions tend to occur in the gaseous phase of the cavitating bubbles. The sonolysis of less volatile complexes first occur in the liquid reaction zone surrounding the bubbles. Sonication of the studied complexes results in the formation of X-ray amorphous products consisted of a mixture of metal beta-diketonates partial degradation products. Heating of as-prepared sonication products in air yields nanocrystalline oxides of corresponding metals.  相似文献   

14.
Raman spectroscopy (RS) for selective quantification of protein species in mixed solutions holds enormous potential for advancing protein detection technology to significantly faster, cheaper, and less technically demanding platforms. However, even with powerful computational methods such as nonlinear least squares regression, protein quantification in such complex systems suffers from relatively poor accuracy, especially in comparison with established methods. In this work, a combination of the expanded set of spectral information provided by polarized Raman spectroscopy (PRS) that is otherwise unavailable in conventional RS was, to our knowledge, explored to enhance the quantitative accuracy and robustness of protein quantification for the first time. A mixture containing two proteins, lysozyme and α‐amylase, was used as a model system to demonstrate enhanced quantitative accuracy and robustness of selective protein quantification using PRS. The concentrations of lysozyme and α‐amylase in mixtures were estimated using data obtained from both traditional RS and PRS. A new method was developed to select highly sensitive peaks for accurate concentration estimation to take advantage of additional spectra offered by PRS. The root‐mean squared errors (RMSE) of estimation using traditional RS and PRS were compared. A drastic improvement in RMSE was observed from traditional RS to PRS, where the RMSEs of α‐amylase and lysozyme concentrations decreased by 11 and 7 times, respectively. Therefore, this technique is a successful demonstration in achieving greater accuracy and reproducibility in the estimation of protein concentration in a mixture, and it could play a significant role in future multiplexed protein quantification platforms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Mesoporous RuO2 films were electrochemically fabricated on ITO-coated glass substrate from aqueous ruthenium chloride (RuCl3·nH2O) solution. To achieve highly stable mesoporous structure, an aqueous mixture of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) was used as a templating agent.The mesoporous structure was confirmed by small angle X-ray diffraction (SAXRD) and transmission electron microscopy (TEM). The addition of small amount (10wt%) of CTAB significantly improved the stability of porous structure. The crystallinity of synthesized RuO2 thin film was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Specific capacitance of the synthesized films was evaluated by measuring cyclic voltammetry (CV) and charge-discharge curves in 0.5 M H2SO4. Compared with non-porous electrode, mesoporous RuO2 showed higher supercapacitor performance.  相似文献   

16.
The potential for using hydroxyl radical (OH?) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H2O2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H2O2 by NP surface generated OH? were investigated. Depending on the ratio of iron and H2O2, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.  相似文献   

17.
The decomposition kinetics of Fe(CO)5 and Mo(CO)6 induced by sonolysis in hexadecane solvent was studied as a function of temperature (303–343 K) under an inert atmosphere. The decomposition data, obtained over at least two half lives in most of the runs, yielded first-order rate constant (k) values with correlation co-efficient (R2)>0.95. The products were characterized by various spectroscopic techniques. The transmission electron microscopy (TEM) yielded images from which the mean particle diameter (MPD) of 10 nm for Fe and <3 nm for Mo were estimated. The generation of amorphous Fe and semi-crystalline Mo particles was determined from line broadening and corresponding d-spacing values in the X-ray diffraction (XRD) spectra. The XAFS/XANES data were consistent with the production of Fe(0) metal but carbided Mo (Mo2C). The one-step production of high-yield pyrophoric products demonstrated the applicability of sonolysis to effectively produce gram-quantity of zero-valent metals.  相似文献   

18.
19.
This study aims to compare the efficiency of sonolysis and ozonation in improving anaerobic biodegradability of source sorted organic fraction of municipal solid waste, for the enhancing of biogas production and energy recovery as well. The methane yield of solid organic material anaerobic digestion is significantly affected by substrate availability, which can be favoured by pretreatments. In this investigation, both sonolysis and ozonation effects on substrate solubilisation and anaerobic biodegradability were evaluated under different treatment conditions. Results show that both pretreatments can significantly improve the solubilisation of organic solid waste. However, during ozonation experiments, no correlation was observed between increased solubilisation and biogas production: the application of higher ozone doses led to the formation of by-products less biodegradable than untreated substrate. This evidence makes the ultrasound process more efficient than ozonation and addresses further studies for sonolysis optimisation as pretreatment for solid waste anaerobic digestion.  相似文献   

20.
汪静  袁春伟  唐芳琼 《中国物理》2005,14(8):1581-1584
近几年来,用垂直沉积法制备胶体晶体得到了人们的广泛关注。用乙醇水溶液为溶剂,用垂直沉积法制备了二氧化硅胶体晶体薄膜。用这种方法一次制备的样品厚度可达20微米以上,并且将较大微球组装成了有序性较好的胶体晶体薄膜。用扫描电镜(SEM)和光学方法检测了样品的质量和厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号