首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption of aqueous ammonia solution vapor on a fluorinated surface of aerosil was studied by IR spectroscopy. The adsorption of NH3 is accompanied by the appearance of absorption bands at 740, 1450, and 3330 cm–1 in the IR spectra. The surface compounds were identified from the results of a study on the thermal degradation of adsorbed complexes and an analysis of literature data. The IR absorption bands at 1450 and 3330 cm–1 correspond to deformational and stretching vibrations of the N-H bonds of the ammonium cation, The 740 cm–1 band was assigned to the vibrations of the Si-F bonds in the complex anion, containing a fragment of SiO2 surface, a fluorine atom, a hydroxyl group and a molecule of water. In this surface-coordinated compound, the silicon atom has a coordination number of six.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 22, No. 6, pp. 747–751, November–December, 1986.  相似文献   

2.
Density functional B3LYP method with 6-31++G** basis set is applied to optimize the geometries of the luteolin, water and luteolin–(H2O)n complexes. The vibrational frequencies are also studied at the same level to analyze these complexes. We obtained four steady luteolin–H2O, nine steady luteolin–(H2O)2 and ten steady luteolin–(H2O)3, respectively. Theories of atoms in molecules (AIM) and natural bond orbital (NBO) are used to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes corrected by basis set superposition error, are within −13.7 to −82.5 kJ/mol. The strong hydrogen bonding mainly contribute to the interaction energies, Natural bond orbital analysis is performed to reveal the origin of the interaction. All calculations also indicate that there are strong hydrogen bonding interactions in luteolin–(H2O)n complexes. The OH stretching modes of complexes are red-shifted relative to those of the monomer.  相似文献   

3.
SO2 adsorption on porous SiO2 films containing alkylamine sites is considered. Alkylamine-SO2 complexes are modeled using the molecular mechanics method; it is demonstrated that the SO2 molecule is adsorbed on the amine-containing group of alkylamine. On the basis of these computations, the alkylamine fragment responsible for SO2 adsorption was determined, and quantum chemical calculations of the electronic structure and complexation energies depending on the number of ethyl substituents in the alkylamine were performed. The dipole moment of the alkylamine-SO2 complex is shown to differ strongly in its magnitude from the geometric sum of dipole moments of component molecules. The reasons for the difference are charge transfer to SO2 and charge redistribution in the alkylamine with decreasing electron density on hydrogen atoms.Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 34, No. 6, pp. 131–134, November–December, 1993.Translated by L. Chernomorskaya  相似文献   

4.
The equilibrium structures, binding energies, and vibrational spectra of the clusters CH3F(HF)1 n 3 and CH2F2(HF)1 n 3 have been investigated with the aid of large-scale ab initio calculations performed at the Møller–Plesset second-order level. In all complexes, a strong C–FH–F halogen–hydrogen bond is formed. For the cases n = 2 and n = 3, blue-shifting C–HF–H hydrogen bonds are formed additionally. Blue shifts are, however, encountered for all C–H stretching vibrations of the fluoromethanes in all complexes, whether they take part in a hydrogen bond or not, in particular also for n = 1. For the case n = 3, blue shifts of the ν(C–H) stretching vibrational modes larger than 50 cm−1 are predicted. As with the previously treated case of CHF3(HF)1 n 3 complexes (A. Karpfen, E. S. Kryachko, J. Phys. Chem. A 107 (2003) 9724), the typical blue-shifting properties are to a large degree determined by the presence of a strong C–FH–F halogen–hydrogen bond. Therefore, the term blue-shifted appears more appropriate for this class of complexes. Stretching the C–F bond of a fluoromethane by forming a halogen–hydrogen bond causes a shortening of all C–H bonds. The shortening of the C–H bonds is proportional to the stretching of the C–F bond.  相似文献   

5.
Ab initio calculations at second-order Møller-Plesset perturbation theory with the 6-31 + G(d,p) basis set have been performed to determine the equilibrium structures and energies of a series of negative-ion hydrogen-bonded complexes with H2O, H2S, HCN, and HCl as proton donors and OH, SH, CN, and Cl as proton acceptors. The computed stabilization enthalpies of these complexes are in agreement to within the experimental error of 1 kcal mol–1 with the gas-phase hydrogen bond enthalpies, except for HOHOH, in which case the difference is 1.8 kcal mol–1. The structures of these complexes exhibit linear hydrogen bonds and directed lone pairs of electrons except for complexes with H2O as the proton donor, in which cases the hydrogen bonds deviate slightly from linearity. All of the complexes have equilibrium structures in which the hydrogen-bonded proton is nonsymmetrically bound, although the symmetric structures of HOHOH and ClHCl are only slightly less bound than the equilibrium structures. MP2/6-31 + G(d,p) hydrogen bond energies calculated at optimized MP2/B-31 + G(d,p) and at optimized HF/6-31G(d) geometries are similar. Using HF/6-31G(d) frequencies to evaluate zero-point and thermal vibrational energies does not introduce significant error into the computed hydrogen bond enthalpies of these complexes provided that the hydrogen-bonded proton is definitely nonsymmetrically bound at both Hartree-Fock and MP2.  相似文献   

6.
The MNDO/M method has been used to carry out calculations for a series of complexes A...H2O with hydrogen bonds X...H-O, where X=C, N, O, F, S, Cl, Br, I. The energies of formation and the structural parameters obtained for the complexes agree well with experiment and with the results of rigorous calculations.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 1, pp. 66–70, January–February 1990.  相似文献   

7.
Quantum mechanical methods have been applied to thecis-ONOO-H2O,cis-ONOO-(H2O)2 andtrans- ONOO-H2O complexes. Equilibrium geometries, binding energies, net atomic charges and vibrational frequencies are presented for several different arrangements. The MØller-Plessett second-order perturbation (MP2) method predicted shorter hydrogen bonds than the SCF method, but the computed Hartree-Fock (HF) binding energies are similar to counterpoise corrected MP2 values. The geometry changes of ONOO and water after solvation are examined. The ONOO and H2O bond length changes follow typical hydrogen bond structural trends, whereas bond angles in ONOO are unaffected when the hydrogen bond is formed, similar to the conclusions from NO 2 -(H2O) n HF/6-31G studies and Monte Carlo simulations. Thecis-ONOO-(H2O) n frequencies are compared with the solution Raman spectrum and with calculations on isolated ONOO.  相似文献   

8.
The ESR and EDRS methods were used to study the effect of adsorption of water and oxygen molecules at room temperature on the valence transformations and coordination transformations of Cr(III) and Cr(V) ions in a tetrahedral ligand environment and Cr(V) ions in square-pyramid coordination, ions that were formed on the surface of SiO2 after vacuum heat treatment of CrO3/SiO2 samples at 1173 K.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 28, No. 4, pp. 372–377, July–August, 1992.  相似文献   

9.
Volumetric H2-uptake measurements on an Mo2N (79 m2g–1) sample reduced at 673 K have been carried out and the uptake isotherms in the temperature range of 308–623 K have been determined. Both the total and reversible hydrogen uptake increased with the uptake temperature. The irreversible hydrogen uptake increased abruptly when the uptake temperature was raised up to 423 K. The maximum of irreversible hydrogen uptake was measured at 473 K. The HIR/Mo ratio calculated from the uptakes obtained in the temperature range of 308–623 K varies in the range of 0.0010–0.0202. One possible mechanism for hydrogen adsorption is proposed to be heterolytic dissociation on Mo-N paris, in which the molybdenum atoms are in unsaturated coordination.  相似文献   

10.
It was shown that the structure of a surface complex and the nature of an adsorption bond can be determined from the material balance of adsorption of H+and OHions and organic compound. A calculation procedure was considered using adsorption of benzoic acid on silica gel and zirconia as examples. It was established that adsorption of benzoic acid on silica gel was accompanied by the release of H+ions resulted from the formation of surface hydrogen bonds, whereas adsorption on zirconia, by the substitution of OHions in coordination sphere of Zr(IV).  相似文献   

11.
Summary. Three new complexes, namely [(nicotinic acid)2H]+I, [(2-amino-6-methylpyridine)H]+ (NO3), and the 1:1 complex between 1-isoquinoline carboxylic acid (zwitter ion form) and L-ascorbic acid were synthesized. The IR spectra revealed different types of hydrogen bonds in these compounds. The X-ray structure determination has shown the first compound to consist of a packing of [(nicotinic acid)2H]+ cations and I anions. In the dimeric cation the two nicotinic acid molecules (zwitter ions) are connected through hydrogen bonds (O–HO). Each dimer is further engaged in other hydrogen bonds with adjacent dimers giving 2D layers. The I ion is located at the inversion center. In the second compound the cation and anion are connected via hydrogen bonds formed between oxygen atoms of the NO3 anion and NH and NH2 of the cation generating a layer structure. All atoms are coplanar on mirror planes. In the 1:1 complex the two molecules are connected through hydrogen bonds formed between the two oxygen atoms of the carboxylate group of 1-isoquinoline carboxylic acid (zwitter ion) and the oxygen atoms of the two adjacent hydrogen groups of the L-ascorbic acid molecule. These complex molecules are engaged in other hydrogen bonds with each other forming a 2D system normal to the long b-axis of the unit cell.  相似文献   

12.
Grafting of mono- and dinuclear Fe(II) complexes on oxide supports such as silica {SiO2-(700)}, silica–alumina {SiO2–Al2O3-(500)} or alumina {Al2O3-(500)} yields the corresponding mono- and dinuclear surface complexes according to mass balance analysis and IR spectroscopy.  相似文献   

13.
Three new complexes, namely [(nicotinic acid)2H]+I, [(2-amino-6-methylpyridine)H]+ (NO3), and the 1:1 complex between 1-isoquinoline carboxylic acid (zwitter ion form) and L-ascorbic acid were synthesized. The IR spectra revealed different types of hydrogen bonds in these compounds. The X-ray structure determination has shown the first compound to consist of a packing of [(nicotinic acid)2H]+ cations and I anions. In the dimeric cation the two nicotinic acid molecules (zwitter ions) are connected through hydrogen bonds (O–HO). Each dimer is further engaged in other hydrogen bonds with adjacent dimers giving 2D layers. The I ion is located at the inversion center. In the second compound the cation and anion are connected via hydrogen bonds formed between oxygen atoms of the NO3 anion and NH and NH2 of the cation generating a layer structure. All atoms are coplanar on mirror planes. In the 1:1 complex the two molecules are connected through hydrogen bonds formed between the two oxygen atoms of the carboxylate group of 1-isoquinoline carboxylic acid (zwitter ion) and the oxygen atoms of the two adjacent hydrogen groups of the L-ascorbic acid molecule. These complex molecules are engaged in other hydrogen bonds with each other forming a 2D system normal to the long b-axis of the unit cell.  相似文献   

14.
The complexes [M(Tsc)2][Cr(Edta)]2, where M is Ni, Cu; Tsc is thiosemicarbazide; Edta4– is the ethylenediaminetetraacetate anion, were synthesized and characterized by X-ray diffraction. The ionic structures are composed of the [M(Tsc)2]2+ cations and [Cr(Edta)] anions with a component ratio of 1 : 2. The cation has a distorted trans-square coordination. The carboxyl groups of the H4Edta molecule are deprotonated and the ligand is attached to the Cr atom in the hexadentate chelating mode. The cations and anions are linked by a system of hydrogen bonds.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 5, 2005, pp. 370–375.Original Russian Text Copyright © 2005 by Ciornea, Filippova, Gulea, Shova, Borta, Simonov.  相似文献   

15.
Ab initio MP2/aug’-cc-pVTZ calculations have been carried out to investigate H2CO : PXH2 pnicogen-bonded complexes and HCO2H : PXH2 complexes that are stabilized by pnicogen bonds and hydrogen bonds, with X=NC, F, Cl, CN, OH, CCH, CH3, and H. The binding energies of these complexes exhibit a second-order dependence on the O−P distance. DFT-SAPT binding energies correlate linearly with MP2 binding energies. The HCO2H : PXH2 complexes are stabilized by both a pnicogen bond and a hydrogen bond, resulting in greater binding energies for the HCO2H : PXH2 complexes compared to H2CO : PXH2. Neither the O−P distance across the pnicogen bond nor the O−P distance across the hydrogen bond correlates with the binding energies of these complexes. The nonlinearity of the hydrogen bonds suggests that they are relatively weak bonds, except for complexes in which the substituent X is either CH3 or H. The pnicogen bond is the more important stabilizing interaction in the HCO2H : PXH2 complexes except when the substituent X is a more electropositive group. EOM-CCSD spin-spin coupling constants 1pJ(O−P) across pnicogen bonds in H2CO:PXH2 and HCO2H : PXH2 complexes increase as the O−P distance decreases, and exhibit a second order dependence on that distance. There is no correlation between 2hJ(O−P) and the O−P distance across the hydrogen bond in the HCO2H : PXH2 complexes. 2hJ(O−P) coupling constants for complexes with X=CH3 and H have much greater absolute values than anticipated from their O−P distances.  相似文献   

16.
Adsorbents can be made by chemical modification of clinoptilolite for which the characteristic adsorption energies of H2O, CO2, H2S and SO2 differ from those of the initial zeolite by 9–12 kJ/mole (cation exchange) and 16–21 kJ/mole (dealuminated). The characteristic adsorption energies of the molecules on modified clinoptilolite increased in the order SO2 > H2S > C02 > H2O.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 31, No. 5, pp. 324–328, September–October, 1995.  相似文献   

17.
2-[2-(Hydroxybenzylidene)-amino]-2-hydoxymethylpropane-1,3-diol (HL) reacts with cobalt, nickel, copper and zinc chlorides, bromides and acetates in water–ethanol solutions and gives MLX · nH2O and ML2 · nH2O complexes (M = Co, Ni, Cu, Zn; X = Cl, Br; n = 0–5). Single crystals of CuLBr were grown, and its crystal structure was determined by X-ray diffraction analysis. The crystals are tetragonal, a = 17.024(2), c = 8.720(2) Å, space group P 21 c, Z = 8, R 1 = 0.0349. In the structure of this complex, the copper atom coordinates the deprotonated HL molecule. The coordination polyhedron of the central atom is an elongated tetragonal pyramid. Its base is built of the imine nitrogen atom, phenolic and alcoholic oxygen atoms, and bromine atom. The apex of the pyramid is occupied by the bromine atom of the adjacent complex connected with the initial complex by the plane of sliding reflection. Thus, the crystal contains infinite chains of complexes running along the c axis, the complexes being united by both bridging bromine atoms and O–H···O hydrogen bonds. The conclusions on the compositions and structures of the remaining compounds were made on the basis of elemental and combined thermal analyses, IR spectroscopy, and magnetic chemistry data. The copper halide complexes were found to have dimeric, and the other metal complexes monomeric, structures. In the synthesized complexes, the azomethine HL can function as a bidentate or tridentate ligand. The thermolysis of the coordination compounds proceeds through the stages of elimination of crystal water molecules (75–90°C) or inner-sphere water molecules (145–155°C) and complete thermal destruction (485–550°C).  相似文献   

18.
Summary Nickel(II) and copper(II) complexes of 2,5-dimethyl-1,3,4-thiadiazole Ni(DTZ)X2 (X = Cl or Br) and M(DTZ)2X2 (M = Ni, X = 1 or N03; M = Cu, X = Cl, Br or NO3) have been prepared. The i.r. spectra show that in all the complexes the ligand is N,N- or N-bonded to the metal while the sulfur atom does not participate in coordination, and that the halide ions are coordinated forming terminal M-X bonds. The NO 3 - group is coordinated in both the nitrato complexes. Magnetic moments of 3.07–3.29 B.M. for the nickel(II) and 1.86–1.92 B.M. for the copper(II) complexes were observed. The Ni(DTZ)X2 complexes have a pseudo-tetrahedral [N2X2] coordination with N,N-bridging ligand molecules. The Ni(DTZ)2X2 and Cu(DTZ)2X2 complexes, with predominantly monodentate ligand, involve six-coordinate metal atoms with strong equatorial [N2X2] bonds and weaker axial bonds.Author to whom all correspondence should be directed.  相似文献   

19.
Compounds that form in the CoSiF6· 6H2O–NioxH2–A–water–alcohol system, where A is thiourea (Thio) or triphenylphosphine (PPh3) and NioxH2is 1,2-cyclohexanedione dioxime, were synthesized and characterized by X-ray diffraction analysis. Crystal structures of the [Co(NioxH)2(PPh3)2]SiF5and [Co(NioxH)2(Thio)2]2SiF6· 3H2O complexes were established. In octahedral Co(III) complexes, two radicals of 1,2-cyclohexanedione dioxime are bound by a hydrogen bond and are located in the equatorial plane. The intramolecular (– and H bonds) and intermolecular (C–H···F and H bonds) interactions in the crystal are discussed.  相似文献   

20.
It has been established by IR spectroscopy, mass spectrometry, and quantum-chemical calculations that dimethylzinc reacts with Aerosil to form complexes with strained siloxane bonds on the SiO2 surface; subsequent reactions of these complexes with free hydroxyl groups afford Si-O-Zn-Me and Si-Me surface structures. Alternative ways of formation of the above-mentioned structures are discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1912–1916, October, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号