首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma jets from conventional non‐transferred arc plasma devices are usually operated in turbulent flows at atmospheric pressure. In this paper, a novel non‐transferred arc plasma device with multiple cathodes is introduced to produce long, laminar plasma jets at atmospheric pressure. A pure helium atmosphere is used to produce a laminar plasma jet with a maximum length of >60 cm. The influence of gas components, arc currents, anode nozzle diameter, and gas flow rate on the jet characteristics is experimentally studied. The results reveal that the length of the plasma jet increases with increasing helium content and arc current but decreases with increasing nozzle diameter. As the gas flow rate increases, the length of the plasma jet initially increases and then decreases. Accordingly, the plasma jet is transformed from a laminar state to a transitional state and finally to a turbulent state. Furthermore, the anode arc root behaviours corresponding to different plasma jet flows are studied. In conclusion, the multiple stationary arc roots that exist on the anode just inside the nozzle entrance are favourable for the generation of a laminar plasma jet in this device.  相似文献   

2.
Different scenarios of the spatiotemporal evolution of the parameters of the diffusive decay of a pulsed electronegative gas plasma in the absence of plasma chemical processes are studied. It is shown that nonlinear diffusion in a plasma with negative ions occurs in several stages. The rate of electron density decay increases with time and, in the beginning of the second stage, almost all the electrons escape from the discharge volume. On the other hand, the ion density profile is smoothed out due to ion-ion ambipolar diffusion and the flow of negative ions toward the wall is absent in the first stage of decay. In the second stage, the main diffusion mode is first established and then the ion-ion (electronless) plasma decays exponentially with a characteristic time determined by ion-ion ambipolar diffusion.  相似文献   

3.
This study aims to investigate the arc plasma shape and the spectral characteristics during the laser assisted pulsed arc welding process. The arc plasma shape was synchronously observed using a high speed camera, and the emission spectrum of plasma was obtained by spectrometer. The well-known Boltzmann plot method and Stark broadening were used to calculate the electron temperature and density respectively. The conductive mechanism of arc ignition in laser assisted arc hybrid welding was investigated, and it was found that the plasma current moved to the arc anode under the action of electric field. Thus, a significant parabolic channel was formed between the keyhole and the wire tip. This channel became the main method of energy transformation between the arc and the molten pool. The calculation results of plasma resistivity show that the laser plasma has low resistivity as the starting point of conductive channel formation. When the laser pulse duration increases, the intensity of the plasma radiation spectrum and the plasma electron density will increase, and the electron temperature will decrease.  相似文献   

4.
We have detected and investigated quasi-periodic series of pulsed energetic electron precipitations in the decaying plasma of a pulsed ECR discharge in a mirror axisymmetric magnetic trap. The observed particle ejections from the trap are interpreted as the result of resonant interaction between energetic electrons and a slow extraordinary wave propagating in the rarefied plasma across the external magnetic field. We have been able to explain the generation mechanism of the sequences of pulsed precipitations at the nonlinear instability growth phase in terms of a cyclotron maser model in which the instability threshold is exceeded through a reduction in electromagnetic energy losses characteristic of the plasma decay.  相似文献   

5.
The need to control a high-current pulsed arc with the aim of raising the efficiency of current-induced heating of a gas is theoretically substantiated. A computational formula for the length of the discharge gap in devices where a pulsed arc is initiated in a gas is derived. The effect of arc voltage control on the current dynamics and variation of the voltage across the gap is studied experimentally. It is shown how pulsed arc control influences the propagation rate of the leading edge of a discharge jet generated in a pulsed plasma jet former.  相似文献   

6.
The physical characteristics of a plasma arc affect the stability of the keyhole and weld pool directly during keyhole plasma arc welding(KPAW). There will be significant change for these characteristics because of the interaction between the keyhole weld pool and plasma arc after penetration. Therefore, in order to obtain the temperature field, flow field, and arc pressure of a plasma arc under the reaction of the keyhole, the physical model of a plasma arc with a pre-set keyhole was established. In addition, the tungsten and base metal were established into the calculated domain, which can reflect the effect of plasma arc to weld pool further. Based on magneto hydrodynamics and Maxwell equations, a two-dimensional steady state mathematical model was established. Considering the heat production of anode and cathode, the distribution of temperature field, flow field, welding current density, and plasma arc pressure were solved out by the finite difference method. From the calculated results, it is found that the plasma arc was compressed a second time by the keyhole. This additional constraint results in an obvious rise of the plasma arc pressure and flow velocity at the minimum diameter place of the keyhole, while the temperature field is impacted slightly. Finally, the observational and metallographic experiments are conducted, and the shapes of plasma arc and fusion line agree with the simulated results generally.  相似文献   

7.
A pulsed plasma enhanced chemical vapor deposition (PECVD) reactor is used for the preparation of thin polyacetylene films. A theoretical model based on the mass transport characteristics of the reactor is developed in order to correlate with experimentally obtained spatial deposition profiles for the acetylene plasma polymer film deposited within the cylindrical reactor. Utilizing a free radical mechanism with gas phase initiation of the polymerization reaction as the rate controlling step, a system parametric study is performed to predict the Peclet number range of operation for the pulsed PECVD reactor. This parametric study indicates radical decay by diffusion to the reactor walls to be the significant physical phenomenon in the system. It is concluded that a quasi-steady-state model is a good tool for predicting the important mass transfer phenomena occurring in the pulsed plasma reactor  相似文献   

8.
通过测量脉冲磁过滤阴极弧等离子体沉积系统中的基片台悬浮电位,发现了弧源接地方式对基片台悬浮电位与等离子体电位影响很大。当阳极接地时基片台悬浮电位可达-60V,而弧源悬浮时却只有-5V。因此,要获得相似沉积条件的沉积薄膜,弧源接地方式不同,给基片施加偏压也应有所不同。  相似文献   

9.
The washer plasma gun is widely used to produce pulsed plasma and has various applications in plasma physics. A washer plasma gun and a Guillemin-E type pulse forming network are designed and fabricated in the laboratory to produce pulsed argon plasma in the Compact Plasma System. The spectroscopic signals of pulsed plasma are taken through toughened float glass at a distance of about 0.3 m from the plasma gun by a USB4000 digital spectrometer. Assuming the gun plasma is in Local Thermodynamic Equilibrium, Boltzmann plot method and the line ratio method are used to measure the excitation/electron temperature of pulsed plasma with different base pressure varying from 0.2 mbar to 1 mbar. The excitation/electron temperature of the plasma increases slightly with increasing base pressure within the range of 0.2 mbar to 0.8 mbar and then decreases slightly at a pressure of 1 mbar. Both methods produce almost similar results in temperature measurement, but the Boltzmann Plot method is most accurate than line ratio method and widely used method to obtain the excitation/electron temperature of plasma in Local Thermodynamic equilibrium condition.  相似文献   

10.
The interaction of liquid-metal droplets with plasma jets in the cathode region of a vacuum arc is considered in the context of an ecton model. It is shown that heating of a droplet in the cathode spot region can initiate the droplet transition to the plasma state.  相似文献   

11.
Fluctuation phenomena commonly exist in arc plasmas, limiting the application of this technology.In this paper,we report an investigation of fluctuations of arc plasmas in an arc plasma torch with multiple cathodes.Time-resolved images of the plasma column and anode arc roots are captured.Variations of the arc voltage, plasma column diameter, and pressure are also revealed.The results indicate that two well-separated fluctuations exist in the arc plasma torch.One is the high-frequency fluctuation(of several thousand Hz), which arises from transferring of the anode arc root.The other is the low-frequency fluctuation(of several hundred Hz), which may come from the pressure variation in the arc plasma torch.Initial analysis reveals that as the gas flow rate changes, the low-frequency fluctuation shows a similar variation trend with the Helmholtz oscillation.This oscillation leads to the shrinking and expanding of the plasma column.As a result, the arc voltage shows a sinusoidal fluctuation.  相似文献   

12.
We report the first plasma scattering experiment using a pulsed single frequency hybrid-CO2 laser, employing heterodyne detection to resolve the spectrum. Waves propagating parallel to the electron current in a magnetically stabilised hydrogen arc plasma are detected.  相似文献   

13.
同轴枪脉冲放电产生的等离子体具有高速度、高密度的特点,在核聚变、空间推进、天体物理领域具有很高的应用价值.本文针对不同放电方式对等离子体特性的影响进行了理论实验研究,通过调换脉冲电源整流二极管的方向改变充电电流方向实现正、负脉冲放电,采用光学、电学、磁探针等诊断手段,研究了正、负脉冲放电产生的等离子体性能;通过高速相机观察到正脉冲等离子体的分团现象,使用了图像处理技术,量化对比了等离子体发光强度.结果表明在相同工作气压和放电电压下,负脉冲等离子体拥有更高的密度,流速稍小但性能趋稳;而正脉冲等离子体具有更高的射流速度,也易产生明显的分团现象,所得实验结果与理论分析相一致.  相似文献   

14.
An arc channel tends to shrink due to its conductivity increasing with the increase of temperature.In this study,to generate large area arc plasma,we construct a magnetically rotating arc plasma generator,which mainly consists of a lanthanide tungsten cathode(13 mm in diameter),a concentric cylindrical graphite anode chamber(60 mm in diameter)and a solenoid coil for producing an axial magnet field.By controlling the cold gas flow,the magnetically rotating arc evolves from constricted mode to diffuse mode,which almost fills the whole arc chamber cross section.Results show that the diffuse arc plasma has better uniformity and stability.The formation mechanism of large area arc plasma is discussed in this paper.  相似文献   

15.
The layout of an X-ray source for diagnostics of the compressed state of laser plasma is proposed, and its optimal parameters are calculated under the conditions required for nuclear fusion. Such a source operating in a pulsed regime is intended to be used for determining the spatial distribution of laser-plasma density with high temporal resolution by means of multiframe (pulses follow with a specified time interval) backlight imaging of the main target by X-ray pulses obtained by irradiation of a secondary target by picosecond laser pulses.  相似文献   

16.
介绍一种结构设计简单、操作运行方便的新型毫米量级大气压冷等离子体射流发生技术.这种射流可以在大气压条件下,利用多种工作气体(如Ar,He,N2),通过毛细管介质阻挡放电(DBD)的方式实现.使用频率为33kHz,峰值电压为1—12kV的双向脉冲电源,利用Ar,He,N2等工作气体,在毛细管内形成了稳定的冷等离子体射流.放电区域的光辐射空间分布利用商用CCD摄像机记录,从中研究放电形态和空间分布,观察到了在DBD区域的流动气体放电和在毛细管出口处形成的等离子体射流 关键词: 冷等离子体射流 毛细管介质阻挡放电 射流射程 射流激发温度  相似文献   

17.
An experimental confirmation was obtained of the anode potential fall effect in pulsed broad-beam ion and plasma sources utilizing the evaporation of metal by a vacuum arc. An increase in the overall voltage across the arc discharge was discovered. The investigations demonstrated that the magnitude of the positive anode fall depends on the structural features of the ion source and are determined by the ratio of the plasma flux directed onto the lateral surface of the anode to the total plasma flux from the cathode spot. It was established that the anode fall effect is controlled and makes it possible to influence the homogeneity of the ion current distribution over the beam cross section, the efficiency of extracting ions from the plasma, and the charge composition of the ion flux.Scientific-Research Institute of Nuclear Physics, Polytechnic University, Tomsk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 82–92, February, 1994.  相似文献   

18.
An arc channel at atmospheric pressure tends to shrink generally. In this paper, a non-transferred DC arc plasma device with multiple cathode is introduced to produce a large area arc plasma at atmospheric pressure. This device is comprised of a 42-mm diameter tubular chamber, multiple cathode which is radially inserted into the chamber, and a tungsten anode with a nozzle in its center. In argon/helium atmosphere, a large area and circumferential homogenous diffuse arc plasma, which fills the entire cross section surrounded by the cathode tips, is observed. Results show that the uniformity and stability of diffuse arc plasma are strongly related to the plasma forming gas. Based on these experimental results, an explanation to the arc diffusion is suggested. Moreover, the electron excitation temperature and electron density measured in diffuse helium plasma are much lower than those of constricted arc column, which indicates the diffuse helium plasma probably deviates from the local thermodynamic equilibrium state. Unlike the common non-transferred arc plasma devices, this device can provide a condition for axial-fed feedstock particles. The plasma device is attempted to spheroidize alumina powders by using the central axis to send the powder. Results show that the powder produced is usually a typical hollow sphere.  相似文献   

19.
One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.  相似文献   

20.
搭建了双丝脉冲MIG焊接试验系统,为了分析研究双丝脉冲MIG焊接的热源耦合机理以及电弧温度场,采用光谱技术对其电弧进行了诊断分析,采用中空探针法进行等离子体的辐射采集,得到电弧等离子体的光信号,利用Boltzmann图法计算了双丝脉冲MIG焊接电弧等离子体的电子温度,得出了电弧等离子体的电子温度分布规律,并结合电信号采集和高速摄像技术对电弧进行了综合分析。研究创新之处在于结合了电弧的高速摄像图片信息和电弧等离子体的光信号对双电弧耦合机理进行分析,对电弧温度场进行了较为直观的分析研究。试验结果表明,在本试验条件下焊接过程实现了推挽式输出,实现了一脉一滴的过渡方式;两个电弧在焊接过程中在磁场的作用下相互吸引,向中心发生了偏移,在双电弧的几何中心形成了新的热源中心,并且电弧发生上飘现象;双电弧电子温度整体呈倒V型分布,在双电弧几何中心位置,距工件表面3 mm的位置电弧电子温度最高,为16 887.66 K,比最低温度11 963.63 K高大约4 900 K。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号