首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Abstract  

Volume graphics is a key technology in fields such as fluid dynamics and medical science. The visualization of volume data requires the creation of a continuous scalar field to exactly or approximately interpolate scalar values assigned to the discrete voxels. In the present paper, we propose a method that we refer to as the volumic version of the multi-level partition of unity (volumic MPU). The method approximately interpolates the scalar values with good precision to generate a scalar field that is continuous up to second-order differentiation. The volumic MPU, being independent of grid structures of input volume data, is applicable to both irregular-grid data and regular grid data. The volumic MPU can also be used as an effective data-compression technique. The speed to evaluate the created scalar field is almost as high as that of trilinear interpolation.  相似文献   

2.

Abstract  

Classic examples of low-Reynolds recirculating cavity flows are typically generated from lid-driven boundary motion at a solid–fluid interface, or alternatively may result from shear flow over cavity openings. Here, we are interested in an original family of boundary-driven cavity flows occurring, in contrast to classic setups, at fluid–fluid interfaces. Particle image velocimetry (PIV) is used to investigate the structure of internal convective flows observed in thin liquid shells. Under the specific configuration investigated, the soap bubble’s liquid shell is in fact in motion and exhibits sporadic local “bursts”. These bursts induce transient flow motion within the cavity of order ReO(1). The combination of PIV and proper orthogonal decomposition (POD) is used to extract dominant flow structures present within bubble cavities. Next, we show that thermally induced Marangoni flows in the liquid shell can lead to forced, (quasi) steady-state, internal recirculating flows. The present findings illustrate a novel example of low-Reynolds boundary-driven cavity flows.  相似文献   

3.

Abstract  

Quantitative visualization of high-Schmidt-number scalar fields has been performed in grid turbulence by means of a planar laser-induced fluorescence (PLIF) technique. The Reynolds number based on a mesh size of the grid is 2500 and the Schmidt number of the scalar is around 2100. To correct for the effects of various spatiotemporal variations such as quantum yield, a recently proposed correction method was introduced in the present experiment. In the present work, a PLIF experiment in combination with a calibration region installed outside of the test section is proposed. Visualizations of the instantaneous fluctuating scalar field suggest that mushroom-like structures accompanied by a pair of stirring structures, called engulfments, exist and contribute to large-scale scalar transfer. Visualization of the scalar dissipation field in the horizontal plane suggests that accumulation of the filament structures, which can be related to the mixing transition, locally exists around large-|c| regions, where |c| is the absolute value of the instantaneous fluctuating concentration. Thus, accumulation of the filament structures should be considered in the development of a turbulent mixing model for high-Schmidt-number scalar transfer.  相似文献   

4.
Zheyan Jin  Hui Hu 《显形杂志》2010,13(3):229-239

Abstract  

An experimental study was conducted to assess the effectiveness of manipulating convective electrokinetic instability (EKI) waves to control/enhance fluid mixing inside three Y-shaped microchannels, which includes a conventional straight channel, a channel with micro-cavities, and a channel with micro-steps. Epi-fluoresence imaging technique was used to conduct qualitative flow visualization and quantitative scalar concentration field measurements inside the microchannels. The effects of the applied static and alternating electric fields on the evolution of the convective EKI waves and the resultant fluid mixing process were quantified in terms of scalar concentration distributions, shedding frequency of the EKI waves, fluid mixing efficiency and mixing augmentation factor. While the fluid mixing efficiency was found to increase monotonically with the increasing strength of the applied static electric fields for all the studied microchannels, the channel with micro-cavities was found to have the best overall mixing enhancement performance among the three studied microchannels. It was found that fluid mixing processes in the microchannels would be further enhanced by adding alternating electric perturbations to the applied static electric fields, regardless the frequency and magnitude of the alternating electric perturbations. The fluid mixing process would be most enhanced when the frequency of the alternating electric perturbations is close to the “natural frequency” of the EKI waves (i.e., the shedding frequency of the EKI waves with the applied static electric fields only).  相似文献   

5.

Abstract  

Systems with closed side branches are liable to an excitation of sound known as cavity tone. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been ascertained by phase-averaged pressure measurements in previous research, while the relation between sound propagation and the flow field is still unclear due to the difficulty of detecting the instantaneous velocity field. It is possible to detect the two-dimensional instantaneous velocity field using high time-resolved particle image velocimetry (PIV). In this study, flow-induced acoustic resonance in a piping system containing closed side branches was investigated experimentally. A high time-resolved PIV technique was used to measure the gas flow in a cavity. Airflow containing oil mist as tracer particles was measured using a high-frequency pulse laser and a high-speed camera. The present investigation on the coaxial closed side branches is the first rudimentary study to visualize the fluid flow two-dimensionally in a cross-section using high time-resolved PIV, and to measure the pressure at the downstream side opening of the cavity by microphone. The fluid flows at different points in the cavity interact, with some phase differences between them, and the relation between the fluid flows was clarified.  相似文献   

6.

Abstract  

A deeper knowledge of the three-dimensional (3D) structure of the pulmonary acinus has direct applications in studies on acinar fluid dynamics and aerosol kinematics. To date, however, acinar flow simulations have been often based on geometrical models inspired by morphometrical studies; limitations in the spatial resolution of lung imaging techniques have prevented the simulation of acinar flows using 3D reconstructions of such small structures. In the present study, we use high-resolution, synchrotron radiation-based X-ray tomographic microscopy (SRXTM) images of the pulmonary acinus of a mouse to reconstruct 3D alveolar airspaces and conduct computational fluid dynamic (CFD) simulations mimicking rhythmic breathing motion. Respiratory airflows and Lagrangian (massless) particle tracking are visualized in two examples of acinar geometries with varying size and complexity, representative of terminal sacculi including their alveoli. The present CFD simulations open the path towards future acinar flow and aerosol deposition studies in complete and anatomically realistic multi-generation acinar trees using reconstructed 3D SRXTM geometries.  相似文献   

7.

Abstract  

We present the results of three-dimensional time-dependent numerical simulations of incremental spin-up of a thermally stratified fluid. The fluid inside a vertical cylindrical container of radius R and height 2H is water characterized by the kinematic viscosity ν and thermal diffusivity κ. Initially, its density (temperature) varies linearly with height and is characterized by a constant buoyancy frequency N, which is proportional to the density gradient. The system undergoes an abrupt change in the rotation rate from its initial value Ωi, when the fluid is in a solid-body rotation state, to the final value Ωf. The aim of this contribution is to show the formation of columnar vortices in a high Rossby number spin-up flow.  相似文献   

8.
F.G. Mitri 《Ultrasonics》2010,50(6):620-627

Objective

The present research examines the acoustic radiation force of axisymmetric waves incident upon a cylinder of circular surface immersed in a nonviscous fluid. The attempt here is to unify the various treatments of radiation force on a cylinder with arbitrary radius and provide a formulation suitable for any axisymmetric incident wave.

Method and results

Analytical equations are derived for the acoustic scattering field and the axial acoustic radiation force. A general formulation for the radiation force function, which is the radiation force per unit energy density per unit cross-sectional surface, is derived. Specialized forms of the radiation force function are provided for several types of incident waves including plane progressive, plane standing, plane quasi-standing, cylindrical progressive diverging, cylindrical progressive converging and cylindrical standing and quasi-standing diverging waves (with an extension to the case of spherical standing and quasi-standing diverging waves incident upon a sphere).

Significance and some potential applications

This study may be helpful essentially due to its inherent value as a canonical problem in physical acoustics. Potential applications include particle manipulation of cylindrical shaped structures in biomedicine, micro-gravity environments, fluid dynamics properties of cylindrical capillary bridges, and the micro-fabrication of new cylindrical crystals to better control light beams.  相似文献   

9.
It is shown that Friedmann–Robertson–Walker (FRW) cosmological models coupled to a single scalar field and to a perfect fluid fitting a wide class of matter perfect fluid state equations, determined in (3+1) dimensional gravity can be related to their (2+1) cosmological counterparts, and vice-versa, by using simple algebraic rules relating gravitational constants, state parameters, perfect fluid and scalar field characteristics. It should be pointed out that the demonstration of these relations for the scalar fields and potentials does not require the fulfilment of any state equation for the scalar field energy density and pressure. As far as to the perfect fluid is concerned, one has to demand the fulfilment of state equations of the form p+ = f(). If the considered cosmologies contain the inflation field alone, then any (3+1) scalar field cosmology possesses a (2+1) counterpart, and vice-versa. Various families of solutions are derived, and we exhibited their correspondence; for instance, solutions for pure matter perfect fluids and single scalar field fulfilling linear state equations, solutions for scalar fields coupled to matter perfect fluids, a general class of solutions for scalar fields subjected to a state equation of the form p + = are reported, in particular Barrow–Saich, and Barrow–Burd–Lancaster–Madsen solutions are exhibited explicitly, and finally perfect fluid solutions for polytropic state equations are given.  相似文献   

10.
A previous study of the dynamical generation of masses in massless QCD is considered from another viewpoint. The quark mass is assumed to have a dynamical origin and is substituted for by a scalar field without self-interaction. The potential for the new field background is evaluated up to two loops. Expressing the running coupling in terms of the scale parameter μ, the potential minimum is chosen to fix m top=175 GeV when μ 0=498 MeV. The second derivative of the potential predicts a scalar field mass of 126.76 GeV. This number is close to the value 114 GeV, which preliminary data taken at CERN suggested to be associated with the Higgs particle. However, the simplifying assumptions limit the validity of the calculations done, as indicated by the large value of a = \frac g24p=1.077 \alpha=\frac {g^{2}}{4\pi}=1.077 obtained. However, supporting statements about the possibility of improving the scheme come from the necessary inclusion of weak and scalar field couplings and mass counterterms in the renormalization procedure, in common with the seemingly needed consideration of the massive W and Z fields, if the real conditions of the SM model are intended to be approached.  相似文献   

11.

Abstract  

This paper reveals three patterns of bouncing behaviors of suspension drops containing calcium carbonate (CaCO3) powder on a superhydrophobic surface with the aid of a high-speed camera. In transmission electron microscopy (TEM) observation, the particles of CaCO3 are shaped like sticks whose equivalent diameters are about 700 nm. Unlike a pure water drop, dense suspension drops cannot be pinched off at the bounce on the superhydrophobic surface due to a high effective viscosity, whereas the equilibrium contact angle appears to be almost identical in all kinds of droplets.  相似文献   

12.
Electron temperature and electron concentration in the active zone of a miniaturized radio frequency (RF) non-thermal atmospheric pressure plasma jet in argon have been determined using two independent approaches: the spectroscopic measurement of the broadening of Balmer Hb_\beta and Hg_\gamma lines and a time-dependent, spatially two-dimensional fluid model of a single discharge filament. The plasma source has been configured as a capacitively coupled RF jet (27.12 MHz, 8 W generator output power) with two outer ring electrodes around a quartz capillary with diameter of 4.0 mm between which Ar flows at typical rates of 0.3 slm. The discharge has been operated in a self-organized mode, where equidistant, stationary filaments rotate regularly with a constant frequency at the inner wall of the outer capillary. For the purpose of calculating the spectral line broadening different models applicable at higher electron concentration have been evaluated. Resulting electron concentrations are between 2.2 and 3.3 × 1014 cm-3. The calculation according to the line broadening model provides electron temperatures between 20 000 and 30 000 K which is in agreement with the results of the fluid model calculations. Here, a broad radial profile with a maximal value of about 22 000 K in the centre of the column and an electron concentration of about 7 × 1013 cm-3 have been obtained. Moreover, the results of the model calculations reveal a structural change of the filament from the dielectric surface through the sheath to the column. The axially inhomogeneous region has an extension of about 0.5 mm. In the column a concentration of about 1013 cm-3 has been found for the excited argon atoms, whose collisions with electrons represent the most important ionization channel there.  相似文献   

13.

Abstract  

A planar optode system based on an oxygen quenchable luminophore platinum (II) octaethyporphrin (PtOEP) bound with thin polystyrene (PS) film and UV light-emitting diodes (UV-LEDs) was developed to measure the dissolved oxygen (DO) concentration field in microscale water flows. An intensity-based method adopting a pixel-to-pixel in situ calibration technique was used to visualize DO concentration fields in a Y-shaped microchannel. The achievable spatial resolution of the acquired concentration map could be as high as 2.94 μm. The diffusion process of DO through the interface between two parallel water flows having different DO concentrations was quantitatively analyzed. We found that the thickness of the concentration gradient of DO increased as the Reynolds number decreased. The ratio of diffusion length scales coincided with the ratio of inner scales of viscous shear layers in the microchannel for two different Reynolds numbers.  相似文献   

14.
We describe non-flat standard Friedmann cosmology of canonical scalar field with barotropic fluid in form of non-linear Schrödinger-type (NLS) formulation in which all cosmological dynamical quantities are expressed in term of Schrödinger quantities as similar to those in time-independent quantum mechanics. We assume the expansion to be superfast, i.e. phantom expansion. We report all Schrödinger-analogous quantities to scalar field cosmology. Effective equation of state coefficient is analyzed and illustrated. We show that in a non-flat universe, there is no fixed w eff value for the phantom divide. In a non-flat universe, even w eff > ?1, the expansion can be phantom. Moreover, in open universe, phantom expansion can happen even with w eff > 0. We also report scalar field exact solutions within frameworks of the Friedmann formulation and the NLS formulation in non-flat universe cases.  相似文献   

15.

Background  

S100B is considered an astrocytic in-situ marker and protein levels in cerebrospinal fluid (CSF) or serum are often used as biomarker for astrocytic damage or dysfunction. However, studies on S100B in the human brain are rare. Thus, the distribution of S100B was studied by immunohistochemistry in adult human brains to evaluate its cell-type specificity.  相似文献   

16.

Abstract  

This paper visually demonstrates instantaneous behavior of ripples propagating on the surface of a rising bubble through an oil/water interface. This experiment uses potassium iodide (KI) 31 wt% as refractive index matching material which makes the water phase invisible. As a result, the generated micro droplets, which are shown in the preceding paper (Uemura et al. in Europhys Lett 92:34004, 2010), cannot be visible in the present results, and therefore the droplets are positively confirmed to be made of water.  相似文献   

17.
Spectroscopic studies of compression plasma flows generated by a miniature magnetoplasma compressor and of the shock compressed plasma layer formed near a target surface exposed to these flows are reported. The peak electron temperature and density are found to be 3 eV and 1.2⋅1016 cm−3, respectively, in the compressor flow and 4.5 eV and 6.7⋅1016 cm−3 in the shock compressed layer.  相似文献   

18.

Background  

Because the choroid plexus (CP) is uniquely suited to control the composition of cerebrospinal fluid (CSF), there may be therapeutic benefits to increasing the levels of biologically active proteins in CSF to modulate central nervous system (CNS) functions. To this end, we sought to identify peptides capable of ligand-mediated targeting to CP epithelial cells reasoning that they could be exploited to deliver drugs, biotherapeutics and genes to the CNS.  相似文献   

19.
The static perfect fluid in Brans-Dicke theory with spherical symmetry and conformal flatness leads to a differential equation in terms of the scalar field only. We obtain a unique exact solution for the casep=, but density and pressure are singular at the center. We further consider the metric corresponding to a static nonrotating space-time with two mutually orthogonal spacelike Killing vectors in Brans-Dicke theory. We obtain a differential equation involving only the scalar field for the equation of statep= The general solution is found as a transcendental function. Finally, we generalize a theorem given by Bronnikov and Kovalchuk (1979) for perfect fluid in Einstein's theory.On leave from Jadavpur University, Calcutta-32, India.  相似文献   

20.

Abstract  

We propose a new smoothed particle hydrodynamics simulation method that utilizes ellipsoidal kernels instead of spherical kernels. In order to load fluid quantities between time-stepping into smoothed particles, kernel shapes are elongated according to the directions and magnitudes of velocities. The use of these deformable kernels allows us to efficiently simulate fast moving fluids without increasing computational cost. The experiments demonstrate that our method can reproduce the detailed movement of fast fluids by reducing numerical diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号