首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new kinetic-spectrophotometric method is described for the determination of ultra trace amounts of Pd(II). The methods based on catalytic action of Pd(II) on the oxidation of pyrogallol red (PGR) with hydrogen peroxide at pH 9.7. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the PGR at 540 nm, for the first 4.5 min from initiation of the reaction. Calibration curve was linear in the range of 0.02-1.00 microg ml(-1) Pd(II). The limit of detection is 0.017 microg ml(-1) Pd(II). The relative standard deviation (R.S.D.) for ten replicate analyses of 0.03 and 0.60 microg ml(-1) Pd(II) was 1.5 and 0.9%, respectively. The influence of more than 40 potential interfering ions was studied for the selectivity. The proposed method was used for the determination of palladium in catalytic material.  相似文献   

2.
A catalytic spectrophotometric method for the determination of trace amounts of nitrite is proposed. In acidic solution, chlorpromazine (CP) is oxidized by nitric acid to form a red compound, which is further oxidized to a colorless compound. The reaction is accelerated by trace amounts of nitrite and can be followed by measuring the absorbance at 525 nm: nitrite ion is regenerated and multiplied by nitric acid. The absorbance of the reaction increased with an increase in the reaction time, reached a maximum and decreased rapidly. Since the time required for the absorbance to reach the maximum decreased with increasing nitrite concentration, this value was used as the measured parameter for the nitrite determination. Under the optimum experimental conditions (2.3 M nitric acid, 1.2 x 10(-5) M CP, 40 degrees C), nitrite can be determined in the range 0-100 microg l(-1). The relative standard deviations (n = 6) are 4.7 and 1.8% for 40 and 100 microg l(-1) nitrite, respectively. The detection limit of this method (3sigma) is 1.2 microg l(-1). This method was successfully applied to a determination of nitrite in natural water samples.  相似文献   

3.
A simple, precise and accurate method is proposed for rapid determination of trace amounts of hydroxylamine based on the reaction of hydroxylamine with iodate in acidic media. The reaction of neutral red by the produced nitrite ion was used to monitor the reaction spectrophotometrically at 525 nm by a fixed time method. Hydroxylamine in the range of 0.0400-1.200 microg mL(-1) could be determined. The relative standard deviation for 10 determinations of 0.500 microg mL(-1) hydroxylamine was 1.81% and the limit of detection was 0.010 microg mL(-1). The proposed method was applied to the determination of hydroxylamine in water samples with satisfactory results.  相似文献   

4.
《Analytical letters》2012,45(5):991-1000
Abstract

A rapid, simple, sensetive and selective method for the determination of trace amounts of nitrite ion(30-800 ng/ml) is developed. It depends on the reaction of nitrite with Neutral Red. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance at 530 nm by a fixed time method. The limit of detection is 14 ng/ml. The method is used for the determination of nitrite ion in waste water.  相似文献   

5.
A highly sensitive spectrofluorimetric method is proposed for the determination of trace amount of ascorbic acid using a new indication. The method is based on the inhibition of ascorbic acid on the oxidation of pyronine Y (PRY) by nitrite. The detection limit for ascorbic acid is 0.012 microg ml(-1), the linear range of the determination is 0.02-0.36 microg ml(-1). Analytical parameters, such as reagent concentration, pH, reaction temperature and time, were optimized. The relative standard deviations of eleven replication determinations of 0.12 and 0.24 microg ml(-1) ascorbic acid were 1.4 and 0.72%, respectively. This method has been used to determine ascorbic acid in pharmaceuticals, vegetables, fruits and soft drink with satisfactory results.  相似文献   

6.
Carbon disulfide (CS2) was determined at trace levels by its induction effect on the reaction of triiodide with azide in acidic media. The reaction was monitored spectrophotometrically by the decreased absorbance of triiodide over a period of 30 - 180 s from the initiation of the reaction at 350 nm, with calibration linear range of 0.020 - 1.870 microg/ml CS2. The limit of detection is 0.013 microg/ml CS2. A carbon-active column was used for sample solution clean up. The proposed method was successfully applied to the determination of trace carbon disulfide in natural water.  相似文献   

7.
A novel chemiluminescence (CL) flow-through sensor for the determination of pyrogallol has been developed. The method is based on the reaction between pyrogallol and potassium hexacyanoferrate(III) in sodium hydroxide solution. Potassium hexacyanoferrate(III) involved in the CL reaction was electrostatically immobilized on anion-exchange resin packed in a column. Pyrogallol was sensed by the CL reaction between pyrogallol and potassium hexacyanoferrate(III) which was eluted from the ion-exchange column through sodium phosphate injection. The CL emission allows quantitation of pyrogallol concentration in the range 0.01-3.8 microg/mL with a detection limit (3 sigma) of 0.003 microg/mL and a sample throughput of 118 h(-1). The relative standard deviation (n=7) was 2.2% for 0.2 microg/mL of pyrogallol. The influence of foreign compounds was tested.  相似文献   

8.
A new simple, sensitive, and selective spectrophotometric method was developed for the determination of nitrite. The method is based on the reaction of nitrite with sulfathiazole in acidic medium to form a diazonium cation, which is subsequently coupled with N-(1-naphthyl)ethylenediamine dihydrochloride to form a highly stable, violet azo dye. The reaction product has an absorption maximum at 546 nm and obeys Beer's law over a nitrite range of 0.054-0.816 microg/mL. The molar absorptivity of the colored compound is 4.61 x 10(4) L/mol x cm). The detection limit is 12.1 microg/L. The relative standard deviation is 0.85% for 5 determinations of nitrite at 0.27 microg/mL. The reproducibility and validity of the proposed method are discussed in the present paper. The simplicity of the method is demonstrated by the high stability of the azo-dye product as well as the short time required for its complete formation in a reaction at room temperature without pH control or extra extraction. The sensitivity of the method is shown by the successful determination of nitrite in human saliva and rain water, and of nitrogen dioxide in the atmosphere. The results compare favorably with those obtained by the reference method. The selectivity of the method is indicated by its freedom from most interferences, even at high concentrations of nitrate (500 microg/mL).  相似文献   

9.
A new flow injection-kinetic method has been developed for the determination of trace amount of osmium(WI), based on its catalytic effect on the bromopyrogallol red and hydrogen peroxide reaction. The reaction is followed spectrophotometrically by measuring the decrease in absorbance at 559 nm. The calibration graph for osmium(VIII) is linear over the range from 0.0040 to 0.10 μg/ml and the detection limit and sampling frequency are 0.0030 μg/ml and 47 per hour, respectively. The proposed method was applied to the determination of trace amounts of osmium in refined ores and chlorination residues with satisfactory results.  相似文献   

10.
A new simple and rapid catalytic kinetic method for the determination of trace amount of formaldehyde is described. The method is based on the catalytic effect of formaldehyde on the oxidation of Janus green by bromate in the present of sulfuric acid. The reaction monitored spectrophotometrically by measuring the decrease in absorbance of the reaction mixture at 618 nm. The fixed-time method was used for the first 150 s. For initiation of the reaction, under the optimum conditions, in the concentration range of 0.003-2.5 microg ml(-1) formaldehyde can be determined with a limit of detection 0.0015 microg ml(-1). The relative standard deviation of five replicate measurements is 2.3% for 1.0 microg ml(-1) of formaldehyde. The method was used for the determination of formaldehyde in real samples with satisfactory results.  相似文献   

11.
A rapid and sensitive flow-injection spectrophotometric method is proposed for the determination of sulfadiazine and sulfamethoxazole. This method is based on the diazotization of sulfonamide with sodium nitrite, and a coupling reaction of the diazo-compound with alpha-naphthylamine. The optimum experimental conditions are obtained by using the controlled and weighted centroid simplex method. The linear ranges for the determination of sulfadiazine and sulfamethoxazole are 0.2-20 microg ml(-1) and 0.1-20 microg ml(-1), and their detection limits are 0.06 microg ml(-1) and 0.05 microg ml(-1), respectively, and the sampling frequency is 130 samples per hour. The method has been used to determine sulfadiazine and sulfamethoxazole in pharmaceuticals and urine without separation. The results are in agreement with those obtained by a high-performance liquid chromatograph technique at the 95% confidence level.  相似文献   

12.
A kinetic spectrophotometric method for the simultaneous determination of iodate and periodate in mixtures was proposed. The method was based on the reaction of periodate and iodate with pyrogallol red in sulfuric acid media. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of pyrogallol red at 470 nm. Kinetic data collected at 470 nm were processed by principle component artificial neural network (PC-ANN) method. The constructed model was able to predict the concentration of two species in the range of 0.1?C15.0 and 0.1?C17.0 ??g/mL for iodate and periodate, respectively. The proposed method was applied to the simultaneous determination of iodate and periodate in several real samples with satisfactory results.  相似文献   

13.
A simple and sensitive flow injection method is described for the determination of trace amounts of hydrazine, based on its inhibitory effect on the reaction between pyrogallol red and iodate in hydrochloric acid media. The reaction was monitored spectrophotometrically by measuring the change in absorbance of pyrogallol red at 470 nm. The calibration graph was linear over the range of 0.050–1.20 g/mL, with a limit of detection of 0.03 g/mL. The relative standard deviation for ten replicate measurements of 0.060 and 0.70 g/mL was 2.2 and 0.50%, respectively. Potential interfering substances were studied in the presence of hydrazine. The proposed method was applied to the determination of hydrazine in water samples.  相似文献   

14.
A flow injection method is proposed for the determination of nanogram amounts of chromium(III) using a pyrogallol chemiluminescence system. It is based on its catalytic effect on the oxidation of pyrogallol with periodate at a neutral medium. The addition of 3-(N-morpholino)propanesulphonic acid to the reaction system increased the chemiluminescence signal for chromium(III). The present method allows the determination of 5-100ng/ml of chromium(III). The relative standard deviation of 2.2% (n = 10) was obtained at 20 ng/ml of chromium(III) and the detection limit (signal-to-noise ratio = 2) was 1 ng/ml with the sampling frequency of 25/hr.  相似文献   

15.
A simple, precise, sensitive and accurate method was developed for rapid determination of trace quantities of iodate. The method is based on the accelerating effect of iodate on the reaction of bromate and chloride acid in the presence of hydrazine in acidic media. The decolorization of Methyl Orange with the reaction products was used to monitor the reaction spectrophotometrically at 525 nm. Iodate could be determined in the concentration ranges of 0.03 - 1.2 microg ml(-1). The relative standard deviation for ten replicate determinations of 0.3 microg ml(-1) of iodate was 1.65%. The proposed method was applied to the determination of iodate in table salts with satisfactory results.  相似文献   

16.
A kinetic spectrophotometric method for determination of trace nitrite in two dynamic ranges (2–100 and 100–500 ng/mL) based on its catalytic effect on the reaction between methylthymol blue and potassium bromate in acidic (sulfuric acid) media is described. The reaction was monitored spectrophotometrically by measuring the decreasing color of methylthymol blue at 437 nm by the fixed‐time method of 4.0 min at 30°C. The detection limit is 0.6 ng/mL, and the relative standard deviations for 50.0 and 250.0 ng/mL nitrite are 1.6% and 1.3%, respectively. The method was used for the determination of nitrite in water samples.  相似文献   

17.
Phenoxazine (PNZ), 2-chlorophenoxazine (CPN) and 2-trifluoromethylphenoxazine (TPN) were used as new class of spectrophotometric reagents for the determination of nanoamounts of nitrite in presence of cisapride (CSP) and metaclopramide (MCP) as new electrophilic coupling reagents. The methods were based on the oxidation of CSP or MCP by nitrite in hydrochloric acid medium and coupling with PNZ, CPN or TPN to yield red color derivatives which were stable for about 3h and having an absorbance maximum in the range 520-530 nm. Beer's law is obeyed for nitrite in the concentration range 0.08-0.80 and 0.13-1.60 microg ml(-1) for phenoxazine-cisapride and phenoxazine-metaclopramide, respectively. The optimum reaction conditions and other important analytical parameters were established to enhance the sensitivity of these methods. Interference due to various non-target ions was also investigated. The methods were applied to the analysis of nitrite in environmental samples. The performance of proposed methods were evaluated by Student's t-test and variance ratio F-test indicated the significance of proposed methods over the reference spectrophotometric method (Association of Official Analytical Communities (AOAC) method for the determination of nitrite in water samples).  相似文献   

18.
A new rapid and sensitive FI method is reported for spectrophotometric determination of trace chromium(VI) in electroplating waste water. The method is based on the reaction of Cr(VI) with sodium diphenylamine sulfonate (DPH) in acidic medium to form a purple complex (lambda(max) = 550 nm). Under the optimized conditions, the calibration curve is linear in the range 0.04-3.8 microg ml(-1) at a sampling rate of 30 h(-1). The detection limit of the method is 0.0217 microg ml(-1), and the relative standard deviation is 1.1% for eight determinations of 2 microg ml(-1) Cr(VI). The proposed method was applied to the determination of chromium in electroplating waste water with satisfactory results.  相似文献   

19.
Kundu D  Roy SK 《Talanta》1992,39(4):415-418
A spectrophotometric method has been developed for determination of trace amounts of platinum in glass. The method is based on the extraction of platinum(II) from 1M hydrochloric acid containing 0.2M stannous chloride and 4 x 10(-4)M dithizone onto polyurethane foam, elution with acetone (containing 3% v/v concentrated hydrochloric acid) and measurement of the absorbance of the eluate at 530 nm. Beer's law is obeyed up to 10.0 microg/ml Pt. The minimum platinum level in the eluate that can be determined by this method is 0.1 microg/ml.  相似文献   

20.
A kinetic method performed on a flow injection system is described for the determination of ascorbic acid by using its catalytic effect on the complexation reaction of Cu(II) with 5,10,15,20-tetrakis(4-N-trimethyl-aminophenyl)porphyrin. The characteristic spectrum of porphyrin (Soret band), which shows intense absorption around 400 nm (epsilon>2.0 x 10(5) cm(-1)M(-1)), was used first time for determining ascorbic acid. By incorporating the complexation reaction into a flow injection system, ascorbic acid could be determined either over a broad dynamic range of 0.1-1000 microg/ml or at a trace level below 5 ng/ml. Good repeatability was also achieved by testing a working standard of 0.1 microg/ml with 10 injections at a throughput of 35 h(-1), obtaining a relative standard deviation of 0.11%. Substances like amino acids, vitamins, sugars, organic acids and metal ions, showed no or little interference even present at high concentrations. The method was validated in the determination of ascorbic acid contents of some commercially available soft drinks by comparison with the official 2,6-dichloroindophenol method with reasonable agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号