首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A manifold has been developed for on-line microwave oven digestion and flame atomic absorption spectrometric (FAAS) determination of metallic elements in solid samples. The use of a closed flow system permits sample treatment before analysis by FAAS, the direct injection of slurries avoids a filtration step and the interconnection of two conventional rotary injection valves allows the rapid introduction of samples and standards. The determination of lead in sewage sludge was employed as a test system for the proposed on-line sample digestion manifold. The procedure has a limit of detection of 0.2 μg Pb g?1.  相似文献   

2.
A sensitive and selective method was developed for the determination of traces of manganese in urine using on-line electrochemical preconcentration followed by flame atomic absorption spectrometry detection. A home made flow-through polypropylene cell (4.5 cm long × 0.8 cm diameter filled with glass marbles) with an effective inner volume of 0.5 ml containing a working and a counter electrode, both of glassy carbon and a Pt pseudo reference electrode was located in a flow injection manifold specially designed for the purpose of this work. The manganese was deposited from buffer solution of NH3/NH4Cl at pH 9.00 through an oxidizing process at a current of 400 mA during 7 min. A flow of HCl 0.1 mol l−1 at 4 ml min−1 through the cell, chemically dissolved the deposit. A small portion (15 μl) of the concentrate was introduced in a continuously flowing system by means of a timing device and was then carried to the detector for the manganese quantification. All electrochemical and spectroscopic variables as well as possible interferences in both systems were systematically studied. The relative standard deviations for ten consecutive measurements of manganese solutions of 2.0 and 20 μg l−1 were of 2.3 and 1.5%, respectively, while for a sample processed five times was less then 5%. The accuracy of the developed procedure was evaluated by adding known amounts of manganese standard to urine samples and following the whole procedure. Recoveries within the range 97.2-102.8% were obtained. To further prove the accuracy, a Seronorm Trace Elements in Urine, Batch 403125 sample with a reported concentration of 13 μg Mn l−1 was also analyzed. The experimental value obtained was of 12.7 ± 0.1 μg l−1, which does not differ significantly from the reported amount (p < 0.05). A preconcentration factor of 40, a linear range between 0.015 and 60 μg l−1 and a limit of detection of 15 ng l−1 permitted the determination of manganese in real urine samples from non-exposed subjects in the range 0.5-2.8 μg l−1.  相似文献   

3.
A new flow injection on-line adsorption preconcentration system adapted to flame atomic absorption spectrometry (FAAS) for copper determination at the mug l(-1) level was developed. Polytetrafluoroethylene (PTFE) turnings packed in a mini-column were used as sorbent material. The copper ammonium pyrrolidine dithiocarbamate (APDC) complex was sorbed on the PTFE turnings, from which it could be eluted on-line instantly by isobutyl methyl ketone (IBMK) into the flame at a flow rate of 2.3 ml min(-1). The system was optimized and offered good performance characteristics with practically unlimited life time, greater flow rates and improved flexibility, as compared with other sorbent materials and the knotted reactor preconcentration systems. With 1 min preconcentration time, and a sample frequency of 40 h(-1), the enhancement factor was 340, which could be further improved by increasing the preconcentration time. The detection limit was c(L)=0.05 mug l(-1), and the precision was 1.5%, at the 2.0 mug l(-1) Cu level. The method has been applied successfully to the analysis of potable, river and seawater, and its accuracy was tested by the analysis of certified reference materials and by recovery measurements on spiked samples. No significant interferences exist from other substances usually occurring in natural water.  相似文献   

4.
Manganese is extracted on-line from solid seafood samples by a simple continuous ultrasound-assisted extraction system (CUES). This system is connected to an on-line manifold, which permits the flow-injection flame atomic absorption spectrometric determination of manganese. Optimisation of the continuous leaching procedure is performed by an experimental design. The proposed method allows the determination of manganese with a relative standard deviation of 0.9% for a sample containing 23.4 μg g−1 manganese (dry mass). The detection limit is 0.4 μg g−1 (dry mass) for 30 mg of sample and the sample throughput is ca. 60 samples per hour. Accurate results are obtained by measuring TORT-1 certified reference material. The procedure is finally applied to mussel, tuna, sardine and clams samples.  相似文献   

5.
Soylak M  Saracoglu S  Divrikli U  Elci L 《Talanta》2005,66(5):1098-1102
Trace amounts of copper, manganese, cobalt, chromium, iron and lead were quantitatively coprecipitated with erbium hydroxide on 0.05 M NaOH medium. The coprecipitant could be easily dissolved with 1 M nitric acid. The presence of up to 15 g/l of erbium ions did not interfere with the atomic absorption spectrometric determination of analyte ions. The recovery values for analyte ions were higher than 95%. The concentration factor was 25-fold. Coprecipitation parameters including reagent amounts and matrix effects are discussed. The relative standard deviations of the determinations were below 9%. The time required for the coprecipitation was about 30 min. The proposed method was successfully applied for the determination of trace amounts of analyte ions in urine, soil and sediment, natural water samples.  相似文献   

6.
A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 μL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 μg L−1 and 2.1% at 2.0 μg L−1 Cu(II), respectively, while for lead were 0.54 μg L−1 and 1.9% at 30.0 μg L−1 Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.  相似文献   

7.
In this paper, a sample preparation method based on acid extraction of magnesium, manganese and zinc from plant tissue by means of high intensity probe ultrasonication is described. Acid extracts obtained upon sonication were directly nebulised into an air-acetylene flame for fast metal determination by atomic absorption spectrometry. Parameters influencing extraction such as sonication time, ultrasound amplitude, sample mass, particle size, extractant composition and volume were fully optimised. Optimum conditions for metal extraction were as follows: a 3-min sonication time, a 30% ultrasonic amplitude, a 0.1-g sample mass, a particle size less than 50 mum, a 0.3% m/v HCl concentration in the extractant solution and a 5-ml extractant volume. Six plant samples used in the human diet were analysed, the concentration range of the three metals approximately being in the range of 1500-3000 mug g(-1) for Mg, 30-735 mug g(-1) for Mn and 20-45 mug g(-1) for Zn. Limits of detection corresponding to the ultrasound-assisted extraction method were 0.10, 1.26 and 0.65 mug g(-1) for Mg, Mn and Zn, respectively. Between-batch precision, expressed as R.S.D., was about 0.5, 1.5 and 1% for Mg, Mn and Zn, respectively. Analytical results for the three metals by ultrasound-assisted extraction and microwave-assisted digestion showed a good agreement, thus indicating the possibility of using mild conditions for sample preparation instead of intensive treatments inherent with the digestion method. The advantages and drawbacks of ultrasound-assisted extraction in respect to the microwave-assisted digestion are discussed.  相似文献   

8.
A flow-injection system was developed in which alloy metal samples are electrolytically dissolved and the dissolved samples are analysed by flame atomic absorption spectrometry (FAAS). The effects of electrolyte composition and electrolysis parameters on the dissolution of the sample were studied. The method was used for the determination of copper in aluminium alloys. Electrolyte solutions consisting of 0.2–1.0 M nitric acid are better than other electrolytes tested with regard to both alloy sample dissolution and determination of copper by FAAS. The peak height increases linearly with the electrolysis time or current within a certain range. The detection limit depends on the sensitivity of the detector used, and can be improved by increasing the electrolysis time or current. Generally, aluminium alloys containing 0.5–10% copper can give suitable signals for FAAS determination. The reproducibility of electrolysis and determination is about 4% for the same sampling points and 5% for different sampling points on the alloy sample.  相似文献   

9.
High-temperature vaporization-ablation sources provide vapor and/or dry aerosol that can be transported to an analytical observation volume where revaporization of particulates and atomization/ionization/excitation of the vapor can take place. In the previous three decades, graphite-arc vaporization, electrothermal vaporization and laser ablation techniques have been combined with flame and inductively coupled plasma sources in the author's laboratories. These works constitute the basis for a more general review and evaluation of the concepts and results documented in related literature.  相似文献   

10.
Two new ligands, 2-(2-benzoxazolyl)cyanoacetaldehyde and 2-(2-benzoxazolyl)malonaldehyde are proposed for extractive separation and preconcentration. The extraction behaviour of Ag, Bi, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Pd, Pt, Sb and Zn with respect to pH, salt concentration and the presence of various masking agents was studied. A simple extraction procedure for the analysis of high-purity bismuth compounds was developed.  相似文献   

11.
陈静  刘召金  戴振宇  安保超  许群  张祥民 《色谱》2013,31(9):894-897
建立了一个简单、快速、有效的适用于质谱或液相色谱-质谱联用的在线固相萃取(SPE)高通量除盐方法。方法分为单柱和双柱模式,借助于包含双梯度泵(上样泵/分析泵)、自动进样器和配有十通切换阀的柱温箱的高效液相色谱系统,完成样品的自动化在线除盐。单柱模式通过上样泵实现在SPE柱上进样和除盐,被分析物则保留在SPE柱上;除盐完成后,通过阀切换利用分析泵洗脱富集在SPE柱上的被分析物。双柱模式则在单柱模式基础上增加了1根SPE柱,在色谱管理软件控制下2根SPE柱轮流工作,高效率完成样品的在线除盐。该方法在结合质谱分析蛋白质、多肽等领域具有较好的应用前景。  相似文献   

12.
13.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

14.
In this work, bamboo charcoal (BC) was used as a sorbent for on-line solid phase extraction (SPE) coupling with flame atomic absorption spectrometry (AAS) for trace copper and zinc determination in environmental and biological samples. Under the optimum pH of 5.5 (for Zn) and 7.0 (for Cu), trace copper and zinc were effectively adsorbed on the microcolumn and the retained cations were efficiently eluted with HCl or HNO3 with an appropriate concentration and flow rate for on-line AAS determination. With a sample loading time of 60 s at a sample flow rate of 7.6 mL min?1, the enhancement factors of 39 (for Cu) and 30 (for Zn) and detection limits (3σ) of 0.60 µg L?1 (for Cu) and 0.36 µg L?1 (for Zn), respectively, were achieved. The sample throughput was 45 h?1. At the level of 20 µg L?1of Cu(II) and Zn(II), the precision (RSD, n?=?11) were found to be 0.26% and 1.6%, respectively. The proposed method has been successfully applied to the determination of copper and zinc in environmental and biological samples.  相似文献   

15.
A flow injection system was developed for on-line sorbent extraction preconcentration and flame atomic absorption spectrometric determination of cadmium in natural water samples. The non-charged cadmium complex with diethyl-dithiophosphate (DDPA) was formed on-line in 0.1 mol L−1 HNO3 and retained on the hydrophobic poly-chlorotrifluoroethylene (PCTFE) sorbent material. The adsorbed complex was eluted with isobutyl methylketone (IBMK) and injected directly into the nebulizer via a flow compensation unit. All major chemical and flow parameters affecting the complex formation adsorption and elution as well as interference were studied and optimized. By processing 2.4 mL of sample, the enhancement factor was 39 and the sampling frequency was 50 h−1. For 30 s preconcentration time the detection limit was 0.3 μg L−1 and the relative standard deviation at 5.0 μg L−1 Cd concentration level was 2.9%. The calibration curve was linear in the range 0.8–40.0 μg L−1. The accuracy of the method was estimated by analyzing a certified reference material NIST-CRM 1643d (Trace elements in water). Good recoveries were obtained for spiked natural-water and waste-water samples. Correspondence: Aristidis N. Anthemidis, Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, GR-Thessaloniki 54124, Greece  相似文献   

16.
The supramolecular solvent system consists of tetrahydrofuran (THF) and 1-decanol, that was used as an extraction solvent for a microextraction procedure for the preconcentration and separation of Co(II). The proposed supramolecular-based procedure was combined with microsampling flame atomic absorption spectrometry for the determination of cobalt at trace levels in water samples. N-Benzoyl-N,N-diisobutylthiourea was used to chelate Co(II) in an aqueous solution. Quantitative extraction efficiency was obtained at pH 6.5. The effects of analytical parameters including pH, amount of ligand, type, ratio and volume of supramolecular solvent, sample volume and interfering ions were investigated for optimisation of the procedure. The proposed supramolecular solvent-based microextraction procedure (Ss-ME) exhibits a limit of detection (LOD) of 1.29 µg L?1 and a limit of quantification (LOQ) of 3.88 µg L?1. The procedure was validated by addition/recovery tests and by applying TMDA 64.2 and TMDA 53.3 water certified reference materials. The microextraction method was successfully applied for the preconcentration and determination of cobalt in water samples.  相似文献   

17.
The development of a slurry sampling method for the determination of calcium, copper, iron, magnesium and zinc in fish tissue samples by flame atomic absorption spectrometry is described. In comparison with microwave-assisted digestion, the proposed method is simple, requires short time and eliminates total sample dissolution before analysis. Suspension medium was optimized for each analyte to obtain quantitative recoveries from fish tissue samples without matrix interferences. Nevertheless, iron recoveries higher than 46% were not found. Treatment of samples slurried in nitric acid by microwave irradiation for 15-30 s at 75-285 W permitted to achieve efficient recoveries for calcium, iron, magnesium and zinc. Further improvement in the matrix effects for iron determination was accomplished by the use of an additional step of short microwave-assisted suspension treatment. However, standard addition method was required for calcium and copper determination, being necessary hydrochloric acid as suspension medium for the last one. Although copper could not be determined in the certified reference material using microwave-assisted digestion, the accuracy of the slurry sampling method was verified for all the investigated analytes. Detection limits were 22.8 ± 8.0, 0.884 ± 0.092, 5.07 ± 0.76, 35.5 ± 0.7 and 1.17 ± 0.04 μg g−1 for calcium, copper, iron, magnesium and zinc, respectively. The standard deviations obtained using slurry sampling method and microwave-assisted digestion were not significantly different, and the mean relative standard deviation of the over-all method (n = 3) of the slurry sampling method for different concentration levels was below 12%.  相似文献   

18.
The development of an on-line preconcentration system with cloud point extraction for the determination of manganese is described. The system was used to determine manganese levels in food samples using flame atomic absorption spectrometry (FAAS). All steps of the cloud point extraction procedure were performed on-line, from the mixing of reagents to detection. The manganese ions are complexed in a mixture of the reagent 2-[2′-(6-methyl-benzothiazolylazo)]-4-bromophenol (Me-BTABr) and Triton X-114. The components are retained on a minicolumn and then desorbed with eluent acid to subsequent detection of manganese by FAAS. Under the optimized conditions, the method presented a detection limit of 0.7 μg L− 1 and an enrichment factor of 17 to a volume of 3000 μL. The sampling frequency was 30 h− 1. The accuracy of the method was tested by evaluating the amount of Mn in certified reference materials (apple leaves NIST 1515 and spinach leaves NIST 1570a). The proposed procedure was applied to food samples (shrimp powder, flaxseed flour, wheat flour, soy flour and oat), and the results agreed with those obtained by the determination of Mn in foods by atomic absorption spectrometry with electrothermal atomization (ETAAS).  相似文献   

19.
A direct solid sampling flame atomic absorption spectrometric procedure for trace determination of cadmium in biological samples has been developed. Test samples (0.05–2.00 mg) were ground and weighed into small polyethylene vials, which were connected to the device for solid sample introduction into a conventional air/acetylene flame. Test samples were carried as a dry aerosol to a quartz cell, placed between the burner and the optical path, which had a perpendicular entrance and a slit in the upper part. The atomic vapor generated in the flame produced a transient signal that was totally integrated within 1 s. The effect of operating conditions and the extent of grinding on the analytical signal were evaluated. Background signals were always low and a characteristic mass of 0.29 ng Cd was obtained. Calibration was performed using different masses of solid certified reference materials. Results obtained for certified and in-house reference materials were typically within the 95% confidence interval of the certified and/or reference value, and the precision, expressed as relative standard deviation, was between 3.8 and 6.7%. The proposed system is simple and it might be adapted to conventional atomic absorption spectrometers allowing the determination of Cd in more than 80 test samples per hour, excluding weighing.  相似文献   

20.
The literature on the use of microwave-assisted digestion procedures for subsequent sample analysis by means of electrothermal atomic absorption spectrometry (ETAAS) is reviewed. The literature survey reveals that this digestion technique has been applied mainly for biological materials. The elements most extensively determined by this method are cadmium and lead followed by copper, chromium, nickel and iron. The microwave digestion conditions, ETAAS furnace programmes and analytical details of the developed methodologies have been carefully revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号