首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Liu Y  Lei J  Ju H 《Talanta》2008,74(4):965-970
A kind of nanocomposites with good dispersion in water was prepared through noncovalent adsorption of toluidine blue (Tb) on multiwalled carbon nanotubes (MWCNT) for electric communication between horseradish peroxidase (HRP) and electrode. The nanocomposites could be conveniently cast on electrode surface. With the aid of chitosan, HRP was then immobilized on the nanostructure to form a reagentless amperometric sensor for hydrogen peroxide. UV-vis spectroscopy and electrochemical impedance spectroscopy were used to characterize the adsorption of Tb on MWCNT. The presence of both Tb as mediator of electron transfer and MWCNT as conductor enhanced greatly the enzymatic response to the reduction of hydrogen peroxide. The novel biosensor exhibited fast response towards hydrogen peroxide with a detection limit of 1.7x10(-6)M and the linear range extended up to 4x10(-4)M without the interference of ascorbic acid and uric acid. The Michaelis-Menten constant (K'(m)) of the immobilized HRP was evaluated to be 0.16mM.  相似文献   

2.
The adsorption and corrosion inhibition behavior of synthesized Schiff base-based cationic gemini surfactant bis[p-(N,N,N-tetradecyldimethylammonium bromide)benzylidene]thiourea (14-S-14) on mild steel in 20% formic acid in the temperature range of 30°C to 60°C was evaluated using weight loss measurements, solvent analysis of iron ions and potentiodynamic polarization measurements. The synthesized inhibitor was characterized using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thin layer chromatography (TLC). The surface morphology of the corroded mild steel specimen was evaluated using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX), and atomic force microscopy (AFM). Thermodynamic/kinetic parameters were calculated to elaborate the adsorption and corrosion inhibition mechanism of the inhibitor. The inhibition efficiency of the compound was found to vary with inhibitor concentration, immersion time, and temperature. The adsorption of the compound on the steel surface was found to obey Langmuir adsorption isotherm.   相似文献   

3.
A new catalytic method for the determination of divalent sulphur compounds, which are soluble or insoluble in water, based on the iodine–azide reaction in various alcoholic solutions is described. As model divalent sulphur catalysts the sodium sulphide and thiourea were chosen. Determination of ethylenethiourea in alcoholic extracts from apples and bananas was an example of practical application of the proposed method. To that purpose five previous elaborated techniques were adopted: titration, volumetric, gas chromatographic, enthalpimetric and potentiometric. The effect of other organic solvents, salts, acids and pH on the determination of divalent sulphur catalysts was also evaluated.  相似文献   

4.
We report on a bienzyme-channeling sensor for sensing glucose without the aid of mediator. It was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOx) on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs). The bienzyme was cross-linked with the MWNTs by glutaraldehyde and bovine serum albumin. The MWNTs were employed to accelerate the electron transfer between immobilized HRP and electrode. Glucose was sensed by amperometric reduction of enzymatically generated H2O2 at an applied voltage of ?50 mV (vs. Ag/AgCl). Factors influencing the preparation and performance of the bienzyme electrode were investigated in detail. The biosensor exhibited a fast and linear response to glucose in the concentration range from 0.4 to 15 mM, with a detection limit of 0.4 mM. The sensor exhibited good selectivity and durability, with a long-term relative standard deviation of <5 %. Analysis of glucose-spiked human serum samples yielded recoveries between 96 and 101 %.
Figure
A novel bienzyme-channeling sensor for glucose sensing has been constructed without the aid of mediator. This biosensor was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOD) onto glass carbon electrode (GCE) modified with multiwall carbon nanotubes (MWNTs) which accelerated the electron transfer between the HRP and electrode.  相似文献   

5.
We have developed a highly La(III)-selective PVC membrane electrode based on a hexaaza macrocycle, 8,16-dimethyl-6,14-diphenyl-2,3,4:10,11,12-dipyridine-1,3,5,9,11,13-hexaazacyclohexadeca-3,5,8,11,13,16-hexaene [Bzo2Me2Pyo2(16)-hexaeneN6] (I) as membrane carrier, dibutylbutyl phosphonate (DBBP) as solvent mediator and sodium tetraphenylborate (NaTPB) as lipophilic additive. The best performance was given by the membrane of macrocycle I having a composition 10:260:5:120 (I:DBBP:NaTPB:PVC). The electrode exhibits a Nernstian response to La(III) ion in the concentration range 1.0x10(-1)-7.94x10(-7) M with a slope of 19.8+/-0.2 mV/decade of concentration and a detection limit of 5.62x10(-7) M. The response time of the sensor is 12 s and it can be used over a period of 4 months with good reproducibility. The electrode works well over a pH range of 2.5-10.0 and in partially non-aqueous medium with up to 30% organic content. The sensor was also used as an indicator electrode in potentiometric titration of La(III) ions with EDTA and for determining La(III) concentration in real samples.  相似文献   

6.
Two enzmyes, glucose oxidase and peroxidase, were for the first time simultaneously immobilized in regenerated silk fibroin membrane. The structure and morphology of the regenerated silk fibroin membrane containing both glucose oxidase and peroxidase were investigated with IR spectra and SEM. The bienzymes do not change the structures of the regenerated silk fibroin in the membrane, which has an islands-sea structure. For the first time, an amperometric methylene green mediating sensor for glucose based on co-immobilization of both glucose oxidase and peroxidase in regenerated silk fibroin was constructed. Cyclic voltammetry and amperometry were used to test the suitability of methylene green shuttling electrons between peroxidase and the glassy carbon electrode. The bienzyme-based system offers fast response and high sensitivity of the sensor to glucose. The effects of pH, temperature, and the concentration of the mediator on the response current were evaluated, and the dependence of the Michaelis-Menten constant K(m)(app) on the concentration of the mediator was investigated.  相似文献   

7.
A novel inhibition biosensor used for the detection of sulphides (Na2S) has been developed. The biosensor is based on the immobilisation of horseradish peroxidase (HRP) on the Sonogel-Carbon (SNGC) electrode using glutaraldehyde, Poly(4-vinylpyridine) and gold sononanoparticles (AuSNPs). The Poly(4-vinylpyridine) was used due to its high affinity for sulphide anions, while the presence of gold sononanoparticles enhances the electron transfer reaction and improves the analytical performance of the biosensor. The amperometric measurements were performed at an applied potential of ?0.15 V vs. Ag/AgCl in 50 mM sodium acetate buffer solution pH = 6.0. The apparent kinetic parameters (Kmapp, Vmax) of immobilised HRP were calculated in the absence of inhibitor (sulphide) using caffeic acid as substrate. Under the optimal experimental conditions, the determination of sulphide can be achieved in a dynamic range of 0.4–2.8 µM with a low limit of detection of 0.15 µM. The electrochemical impedance spectroscopy (EIS) was also used to characterise the interactions of substrate and inhibitor with the enzyme-modified electrode. The developed biosensor exhibited high sensitivity, selectivity and stability, and can be successfully applied to the detection of sulphide in water.  相似文献   

8.
A sensitive hydrogen peroxidase (H2O2) amperometric sensor based on horseradish peroxidase (HRP)-labeled nano-Au colloids has been proposed. Nano-Au colloids were immobilized by the thiol group of cysteamine, which was associated with the carboxyl groups of poly(2,6-pyridinedicarboxylic acid) (PPDA). With the aid of the hydroquinone, the sensor displayed excellent electrocatalytical response to the reduction of H2O2. Compared with the non-Au-colloid modified electrode, i.e., PPDA/HRP, the Au-colloid modified electrode exhibited better performance characteristics, including stability, reproducibility, sensitivity and accuracy. The biosensor shows a linear response to H2O2 in the range of 3.0 x 10(-7) - 2 x 10(-3) M. The detection limit was 1.0 x 10(-7) M.  相似文献   

9.
We report on a novel sensor for the electrochemical determination of thiourea (TU). It is based on an active carbon paste electrode modified with copper oxide nanoparticles. The modified electrode and the electrochemical properties of thiourea on its surface were investigated using cyclic voltammetry and differential pulse voltammetry. Under optimized conditions, the detection limit is 20 μg?L?1 of TU. The method was applied to the determination of thiourea in fruit juice, orange peel and industrial waste water.
Figure
Cyclic voltammograms of ACPE (A), CuO/ACPE (B) and CuO/CPE (C) in pH 8 phosphate buffered saline.  相似文献   

10.
利用电化学还原氧化石墨烯(GO)的方法将石墨烯(rGO)固定在电极表面上,然后电沉积氢氧化铜和氢氧化镍复合物,构成石墨烯/金属氢氧化物复合纳米材料修饰的玻碳电极(GCE),并通过电聚合天青Ⅰ将辣根过氧化酶(HRP)固定在GCE/rGO/Cu(OH)_2-Ni(OH)_2表面,制得GCE/rGO/Cu(OH)_2-Ni(OH)_2/HRP-PA。对石墨烯/金属氢氧化物复合纳米材料进行了SEM和能谱表征。通过电化学阻抗法和循环伏安法对传感器的制备过程和电化学性能进行了研究,并进一步分别对过氧化氢叔丁基(BHP)及过氧化氢异丙苯(CHP)进行了分析测定。该传感器对BHP和CHP具有良好的检测效果,在2.0×10~(-5)~9.2×10~(-4)mol/L范围内响应电流与BHP浓度呈良好的线性关系,检出限为9.9×10~(-6)mol/L;在3.0×10~(-6)~1.0×10~(-4)mol/L范围内响应电流与CHP浓度呈良好的线性关系,检出限为6.9×10~(-7)mol/L。  相似文献   

11.
The application of a radiotracer method to in situ studies of the adsorption of thiourea labelled with either C-14 or S-35 nuclides on smooth n-type and p-type Si (100) electrodes and on rough p-Si electrodes is described. The adsorption takes place over the whole potential range studied, i.e. −0.5 to 1.2 V. It was found that during the interaction of thiourea with the silicon surface, two different products are formed. The dependence of the surface concentration of the adsorbates on the electrode potential and on the bulk concentration of thiourea was determined. Two different species are proposed to be present on the electrode surface as a result of surface processes: physically adsorbed thiourea molecules and sulphur atoms which are chemically bonded to the surface. Different activities of smooth and rough silicon electrodes towards the adsorption of thiourea were demonstrated.  相似文献   

12.
Conventional voltammetric and amperometric techniques at Pt or Au electrodes have not been considered applicable for quantitative detection of most sulfur compounds. This is the result of the observed loss of electrode activity caused by accumulation of sulfurous adsorbates and surface oxides. Pulsed Amperometric Detection (PAD) at Pt and Au is highly sensitive for the anodic detection of sulfur compounds, organic and inorganic, which adsorb on the electrode surface. The detection of thiourea by PAD at Pt is described here, and is concluded to correspond to the surface-oxide catalyzed oxidation of the sulfur moiety of adsorbed thiourea to sulfate. Results reported here for detection in a flow-injection system (FI/PAD) produce linear calibration plots of Ip vs. cb at low concentration and linear plots of 1/Ip vs 1/cb at high concentrations. The detection limit for thiourea is 0.38 ppm (i.e., ca 17 ng/45 μl sample) for the FI system used.  相似文献   

13.
尤文钰  杨铁金 《化学通报》2016,79(11):1035-1040
本文建立一种新型的青蒿素传感器。首先,在玻碳电极上滴涂氧化石墨,通过电化学方法将氧化石墨还原为石墨烯,然后,在石墨烯上沉积纳米银得到石墨烯/纳米银修饰电极,它作为检测青蒿素的电化学传感器。用此电极对青蒿素进行测定,并通过循环伏安法、差分脉冲伏安法、交流阻抗法等研究其电化学行为。该修饰电极在测定青蒿素溶液时,表现出较正的还原电位和较大的峰电流等优势;对其实验条件如电解质溶液的p H、应用电势等进行了探查,该电化学传感器在青蒿素溶液浓度范围为1.0×10-8~3.0×10-5mol/L时与其还原峰电流呈现良好的线性关系,最低检出限为1.2×10-9mol/L(S/N=3)。此外,对该传感器的稳定性和重现性等也进行了研究,获得令人满意的结果。  相似文献   

14.
A sensor for hydrogen peroxide is described that is based on an indium tin oxide electrode modified with Fe3O4 magnetic nanoparticles which act as a mimic for the enzyme peroxidase and greatly improve the analytical performance of the sensor. The amperometric current is linearly related to the concentration of H2O2 in the range from 0.2 mM to 2 mM, the regression equation is y?=?-0.5–1.82x, the correlation coefficient is 0.998 (n?=?3), and the detection limit is 0.01 mM (S/N?=?3). The sensor exhibits favorable selectivity and excellent stability.
Figure
Using the peroxidase mimic property of Fe3O4 magnetic nanoparticles (MNPs), a sensitive electrochemical method with favorable analytical performance for the determination of hydrogen peroxide (H2O2) was developed.  相似文献   

15.
Two enzmyes, glucose oxidase and peroxidase, were for the first time simultaneously immobilized in regenerated silk fibroin membrane. The structure and morphology of the regenerated silk fibroin membrane containing both glucose oxidase and peroxidase were investigated with IR spectra and SEM. The bienzymes do not change the structures of the regenerated silk fibroin in the membrane, which has an islands-sea structure. For the first time, an amperometric methylene green mediating sensor for glucose based on co-immobilization of both glucose oxidase and peroxidase in regenerated silk fibroin was constructed. Cyclic voltammetry and amperometry were used to test the suitability of methylene green shuttling electrons between peroxidase and the glassy carbon electrode. The bienzyme-based system offers fast response and high sensitivity of the sensor to glucose. The effects of pH, temperature, and the concentration of the mediator on the response current were evaluated, and the dependence of the Michaelis-Menten constant Kmapp on the concentration of the mediator was investigated.  相似文献   

16.
Bi-enzymatic biosensor based on galactose oxidase (GalOD) and horseradish peroxidase (HRP) using ferrocene as an efficient mediator was constructed. When a dependence of a working potential on the sensor performance was examined, an unusual behaviour was observed. With increasing of an applied working potential a lower concentration of substrate to attain full linear range was needed. A fully linear dependence from the first substrate addition was observed at and above the working potential of 150 mV. This activation of the biosensor response by an applied working potential very well corresponds with a formal potential of GalOD (156 mV). When a membrane prevented GalOD access to the electrode surface was applied, no activation effect of a working potential on the sensor performance was observed. Thus, it can be assumed that direct electron communication between GalOD and the electrode occurred.  相似文献   

17.
The mechanism of interference elimination by thiourea in electrothermal atomization is discussed. Activation energies of atomization were measured. The experimental values for bismuth, lead, copper and cadmium were not altered in the presence of concomitants, provided that thiourea was added before atomization. These elements from complexes with thiourea which are converted to sulphides during the charring stage. Atom formation occurs from the sulphides without compound formation between analyte and concomitants.  相似文献   

18.
Waste of electrical and electronic equipment is an interesting secondary resource of base and precious metals. Particularly the use of thiourea‐leaching in acidic medium was proposed for noble metals recovery. In this work, a novel and easy‐to‐use electrochemical sensor was developed, aimed to test thiourea from leaching solutions containing significant thiourea and copper amounts. The sensor was constructed using silver nanoparticles (AgNPs) deposited on screen‐printed electrodes. Its performance was studied in a synthetic leaching solution; changes in the overall surface charge of AgNPs resulting in changes in the charge‐transfer resistance for the copper ions were evaluated by electrochemical impedance spectroscopy.  相似文献   

19.
An amperometric enzyme electrode incorporating horseradish peroxidase is described for the determination of hydrogen peroxide in organic solvents. The enzyme was co-adsorbed with an electron mediator, potassium hexacyanoferrate(II), on the surface of a graphite foil electrode, making reagentless measurement possible. The electrochemical reduction of the enzymatically oxidized mediator was utilized as the analytical signal. Studies in different solvent systems revealed that the electrode could be operated in dioxane, chloroform and chlorobenzene, the last two providing approximately double the sensitivity of the former. The presence of a small amount of aqueous buffer was essential for sensor activity. During 2 weeks of intermittent use, the sensitivity of the electrode decreased to 40% of its initial value. At least 50 assays could be performed with a single sensor.  相似文献   

20.
Xiaoxia Fan 《Analytical letters》2019,52(13):2028-2040
A thiourea-detecting fluorescence sensor with Hg2+ as a switch was developed using nitrogen-doped graphene quantum dots (N-GQDs). The surface of N-GQDs had many organic functional groups on which Hg2+ was effectively bound and turned off the fluorescence of the N-GQDs. The fluorescence of N-GQDs was turned on by the thiol functional group of thiourea that bound strongly with Hg2+ and formed Hg2+/thiourea complexes. After constructing the sensor, the experimental conditions and parameters, such as the pH and Hg2+ concentration, were investigated and optimized. Under the optimum conditions, the constructed fluorescence sensor showed high sensitivity to thiourea at concentrations from 0.5 to 14?µM with a low detection limit of 41.7?nM. The sensor also exhibited high specificity, excellent stability, and good reproducibility so that the determination of thiourea in various samples had acceptable values with good recoveries from 99% to 106%. The relative standard deviation was less than 4.1% (n?=?3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号