首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smith JN  Keil AD  Noll RJ  Cooks RG 《The Analyst》2011,136(1):120-127
Gaseous ammonia, a common toxic industrial compound, is not detected readily in ion trap mass spectrometers because its molecular ion falls below the low-mass cutoff (~m/z 40) normally used when examining organic compounds. Instead, reactions of ammonia with halobenzene radical cations were used with internal electron ionization in two cylindrical ion trap miniature mass spectrometers to create a characteristic product ion by which to identify and quantify ammonia. Ammonia showed a linear response over the concentration range studied (parts per million [ppm] to parts per billion [ppb]) with limits of detection of 17 ppm and 220 ppb for experiments involving direct introduction and thermal desorption after pre-concentration, respectively. These values are comparable to ammonia's permissible exposure limit (50 ppm) and odor threshold (5 ppm). Receiver operating characteristic (ROC) curves were used to describe the method sensitivity, the probability of true positives, and the false positive rate for ammonia. A customized reaction scan function was created to select the species available for the ion/molecule reaction and set the amount of time the product ion could be accumulated in the trap. Product ion identity was verified using tandem mass spectrometry. Similar reactions with methylamine, ethylamine and the two nitriles, acetonitrile and benzonitrile, were explored.  相似文献   

2.
Choudhury TK  Kotiaho T  Cooks RG 《Talanta》1992,39(9):1113-1120
Acrolein and acrylonitrile can be quantified directly at low levels in aqueous solution using membrane introduction mass spectrometry. Electron impact was used to generate positively charged ions and electron capture of the O-(2,3,4,5,6-pentafluorobenzyl)hydroxyl amine (PFBOA) derivative was used to generate negatively charged ions of acrolein in aqueous solutions. The origins of all ions in the mass spectra and product MS/MS spectra recorded using both ionization methods were assigned and a reaction scheme is given which accounts for the fragmentation of the PFBOA derivative. Detection limits were measured using multiple reaction monitoring in both the methods. With electron capture detection, acrolein could be detected without preconcentration at 10 ppb levels. Electron impact ionization and multiple reaction monitoring both allowed the measurement of acrylonitrile at levels as low as 10 ppb.  相似文献   

3.
Fragmentations induced by collision-activated dissociation of α-O- and α-N-substituted oxazolidines are demonstrated under ammonia chemical ionization (CI) and electron impact (El) conditions. Discrimination of these regioisomers is achieved using either conventional EI mass spectra or daughter ion mass spectra of the protonated molecules under ammonia CI conditions.  相似文献   

4.
Combined liquid chromatography and mass spectrometry is frequently performed with the thermospray interface nowadays. With thermospray a special ion source has to be installed. Tuning and calibration of that special source is still a problem which has not been adequately solved, Reference compounds commonly used in conventional electron impact or chemical ionization mass spectrometry cannot be used in the thermospray source. Most of the solutions to this problem reported in the literature cause a rapid contamination of the ion source or may result in memory effects. In this paper the use of acetic acid ammonia cluster ions is proposed for tuning and calibration in thermospray. Abundant cluster ions can be observed over the mass range between m/z = 100 and 1000 when an eluent containing ammonium acetate and 0.5% acetic acid is used. Features of the mass spectra obtained in both filament-off, filament-on and discharge-on modes will be discussed.  相似文献   

5.
Recently, a new and efficient method for total homocysteine (tHcy) quantitation in plasma using trap and release membrane introduction mass spectrometry (T&R-MIMS) with a versatile removable direct introduction membrane probe (DIMP) was described [R. Haddad, M. A. Mendes, N. F. Hoehr and M. N. Eberlin, Analyst, 2001, 126, 1212]. Herein we report on the use of the DIMP-T&R-MIMS technique for total cysteine (tCys) quantitation; hence combined tCys and tHcy quantitation in plasma or serum can be achieved. The method employs Cys and Hcy derivatization with ethyl chloroformate (after disulfide bond reduction with dithiothreitol and protein precipitation with trichloroacetic acid), preconcentration in a capillary silicone membrane, and their thermal desorption to the gas phase inside the ion source region of a mass spectrometer, at a point exactly between the two ionization filaments. Thermal desorption uses the uniform heat radiation provided by the two ionization filaments. The analytes are then ionized by electron ionization and both Cys and Hcy are quantitated by mass spectrometry using selected ion monitoring. For tCys quantitation, good linearity and reproducibility was observed for concentrations ranging from 5 to 350 microM, recovery was near 95%, and the limit of detection (LOD) was of 2 microM. This LOD is well below the mean Cys concentration in plasma, and serum samples from a large group of healthy people showed a mean tCys concentration of 132 +/- 45 microM.  相似文献   

6.
Membrane introduction mass spectrometry (MIMS) allows on-line monitoring of the products of photolysis (254 nm) of benzyl acetate in aqueous methanol and 3,5-dimethoxybenzyl acetate in water. The reaction mixture is continuously exposed to a silicone membrane through which analyte molecules permeate into a triple quadrupole mass spectrometer for qualitative and quantitative analysis. Ionization is achieved by either isobutane or ammonia chemical ionization, and ions characteristic of the reactant ester and its products are monitored simultaneously and continuously. Three products, benzyl methyl ether, ethylbenzene, and bibenzyl are observed in the benzyl acetate photolysis. Two products, 3,5-dimethoxybenzyl alcohol and 3,5-dimethoxyethylbenzene, are formed in the photolysis of 3,5-dimethoxybenzyl acetate. Quantitation is achieved through calibration using external standard solutions and, in the case of benzyl methyl ether, tandem mass spectrometry is used to verify product identification. During the photolysis of benzyl acetate, benzyl methyl ether and ethylbenzene are produced at onset with similar efficiencies. For the 3,5-dimethoxy ester photolysis, performed in aqueous solution, the efficiency of formation of the polar product 3,5-dimethoxybenzyl alcohol is about 300 times greater than that of the nonpolar product 3,5-dimethoxyethylbenzene. The results show that the relative reaction rates are dependent on the solvent and on the photon intensity and are consistent with earlier off-line experiments by Pincock et al. which showed that the photolysis proceeds through both ion and radical pair intermediates. To the best of our knowledge, the work reported here describes the first analysis of the photochemistry of an aralkyl ester in water and the first use of on-line mass spectrometry in a mechanistic study.  相似文献   

7.
A procedure for determining small quantities of gliadins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) in gluten-free foods containing relatively large amounts of prolamin proteins from maize or rice is described. We report for the first time that gliadins, the ethanol-soluble wheat prolamin fraction, can be quantitatively solubilized in 1.0 M acetic acid, while the corresponding ethanol-soluble maize or rice prolamin fraction remains insoluble in acetic acid. We describe a methodology for the detection of gliadins in maize and rice foods based on a two-step procedure of extraction (60% aqueous ethanol followed by 1 M acetic acid). Subsequent MALDI-TOFMS analysis of the resulting acidic extract from these gluten-free foods clearly confirms the presence of a typical mass pattern corresponding to gliadin components, ranging from 30 to 45 kDa. Depending on the percentages of maize or rice flours employed in the elaboration of these foods, the combined procedure enables levels of gliadins from 100 to 400 ppm to be detected. The efficiency of this combined procedure corroborates enzyme-linked immunosorbent assay data for a large number of maize/rice gluten-free foods by means of direct visualization of the characteristic gliadin mass pattern in maize or rice foods.  相似文献   

8.
In a continuous neat supersonic expansion ammonia clusters are generated and doped with sodium atoms in a pickup cell. Thus clusters of the form Na(NH(3))(n) are produced that are photoionized by a tunable dye laser system. The ions are mass analyzed in a reflectron time-of-flight mass spectrometer, and the wavelength dependent ion signals serve for the determination of the ionization potentials (IP) of the different clusters in the size range 10< or =n< or =1500. Aside from a plateau for 10< or =n< or =17 and smaller steps at n=24, 35, and 59 on the average a continuous decrease of the IP with cluster size is observed. The IPs in this size range are linear with (n+1)(-13) and extrapolate to IP(n=infinity)=1.66+/-0.01 eV. The slope is consistent with a dielectric continuum model of the solvated electron and the dielectric constant of the solid. The extrapolated IPs are compared with results obtained for negative ammonia cluster ions and metallic solutions in liquid ammonia. Differences are explained by the presence of counterions and their various distances from the solvated electron.  相似文献   

9.
采用膜供氧催化氧化反应器处理太空舱冷凝废水。以乙醇为目标污染物,研究了膜供氧催化氧化反应器对其的处理效果,并考察了催化反应对膜传质模型的影响。结果表明,随着停留时间的增加,乙醇的去除率增大,中间产物乙酸的生成率减少。当废水流量为0.5mL·min-1,气室压力为2kPa时,乙醇的去除率可达86.1%,其中81.4%完全氧化,4.7%转化成乙酸。基于传质模型对实验结果分析表明,催化反应有利于提高膜供氧总传质系数,当流量为0.5mL·min-1时,与无催化反应条件相比,氧总传质系数提高11.8倍。停留时间的增加也有利于提高膜供氧传质系数。结果表明,膜供氧催化氧化反应器可高效降解冷凝废水中的乙醇,在太空舱冷凝废水处理中有潜在的应用价值。  相似文献   

10.
The chemical ionization mass spectra of 16 amino acid thiohydantoins were examined using isobutane or ammonia as reagent gases. Except for a few cases, including some aromatic amino acids, the chemical ionization spectra were much simpler than the corresponding electron impact spectra. Therefore, the major component in the amino acid thiohydantoin mixture was easily detected by chemical ionization mass spectrometry. The combination of the chemical ionization method and thiohydantoin formation was applied successfully to the sequence analysis of model peptides.  相似文献   

11.
The methane chemical ionization mass spectra of dodecan-1, 10-dioic acid and the methyl ester show enhanced water and methanol elimination relative to monofunctional analogs. Elimination of acetic acid from 1,10-diacetoxydecane, however, was reduced relative to 1-acetoxydecane. This appears to be the result of bifunctional interactions. The steric requirement of this interaction is shown in an homologous series of dicarboxyl compounds. The change in interfunctional separation is shown to affect the proton and ammonium ion affinities in the ammonia chemical ionization spectra of the dicarboxyl compounds in a manner explained in terms of proton and ammonium ion complex formation. The observation is extended to various other functional groups.  相似文献   

12.
The signal response of moderately polar to nonpolar neutral steroidal compounds in positive ion mode was significantly improved in electrospray ionization mode by addition of volatile organic acids (trifluoroacetic acid, acetic and formic) at concentrations much lower than those normally employed for high-performance liquid chromatographic separations of ionic compounds. Each of the three acids enhanced the sensitivity, the order being: formic acid (approximately 50-200 ppm, v/v) > acetic acid (100-500 ppm) > trifluoroacetic acid (5-20 ppm). Higher concentrations caused decrease in the sensitivity. The extent of increase in the sensitivity was compound specific and also depended on the nature of organic modifier present in the mobile phase. Acetic acid was the acid of choice for the 'wrong-way-round' ionization of sulfate conjugates. The postcolumn addition of silver nitrate produced highly stable (M + Ag)+ adducts with concomitant increase in signal response and reduction in baseline noise.  相似文献   

13.
A novel cataluminescence (CTL) sensor using nanosized MgO as the sensing material for determination of the trace of vinyl acetate in air was proposed in the present study. Eight catalysts were examined and the results showed that the CTL intensity on MgO nanoparticles was the strongest. Under the optimized conditions, the linear range of the CTL intensity versus the concentration of vinyl acetate vapor was 2-2000 ppm with a detection limit of 1.0 ppm (3σ) and a relative standard deviation (R.S.D.) of 1.18% for five times determination of 1000 ppm vinyl acetate. There were no CTL emissions when foreign substances, including ammonia, benzene, acetic acid, formaldehyde and ethyl acetate, passed through the sensor. CTL emissions were detected for methanol, ethanol and acetaldehyde at levels around 5.5%, 10.1% and 13.4% compared with the responsed vinyl acetate. The sensor had a long lifetime more than 100 h.  相似文献   

14.
Fourier transform ion cyclotron resonance mass spectrometry has been found to produce reliable exact mass measurements using two different internal calibration methods. For these measurements, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) were utilized both individually and in tandem. For internal calibration with a co-dissolved polyethylene glycol standard, measurements of 41 compounds resulted in an average absolute mass determination error of 0.7 ppm, with a standard deviation of 0.9 ppm. For comparison, internal calibration was effected through the simultaneous use of ESI and MALDI, with the former being used for the introduction of analyte ions and the latter for formation of polymethylmethacrylate calibrant ions. This technique led to mass measurements with an average absolute error of 0.8 ppm and a standard deviation of 1.0 ppm. In addition, exact mass measurements of tandem mass spectrometry fragment ions were made for 35 compounds using external calibration with a single internal mass standard. The observed average absolute error was 0.7 ppm with a standard deviation of 1.0 ppm.  相似文献   

15.
A tabletop soft x-ray laser is applied for the first time as a high energy photon source for chemical dynamics experiments in the study of water, methanol, and ammonia clusters through time of flight mass spectroscopy. The 26.5 eV/photon laser (pulse time duration of approximately 1 ns) is employed as a single photon ionization source for the detection of these clusters. Only a small fraction of the photon energy is deposited in the cluster for metastable dissociation of cluster ions, and most of it is removed by the ejected electron. Protonated water, methanol, and ammonia clusters dominate the cluster mass spectra. Unprotonated ammonia clusters are observed in the protonated cluster ion size range 2< or =n< or =22. The unimolecular dissociation rate constants for reactions involving loss of one neutral molecule are calculated to be (0.6-2.7)x10(4), (3.6-6.0)x10(3), and (0.8-2.0)x10(4) s(-1) for the protonated water (9< or =n< or =24), methanol (5< or =n< or =10), and ammonia (5< or =n< or =18) clusters, respectively. The temperatures of the neutral clusters are estimated to be between 40 and 200 K for water clusters (10< or =n< or =21), and 50-100 K for methanol clusters (6< or =n< or =10). Products with losses of up to five H atoms are observed in the mass spectrum of the neutral ammonia dimer. Large ammonia clusters (NH(3))(n) (n>3) do not lose more than three H atoms in the photoionization/photodissociation process. For all three cluster systems studied, single photon ionization with a 26.5 eV photon yields near threshold ionization. The temperature of these three cluster systems increases with increasing cluster size over the above-indicated ranges.  相似文献   

16.
A porous cellulose tape impregnated with a processing solution that includes 4-p-nitroben-zylpyridine, N-benzylaniline and methanol is a highly sensitive means of detecting phosgene and maintains stable sensitivity for at least three months in air in a desiccator. When the sample including phosgene was passed through the tape, the color of tape changed to red. The degree of color change was proportional to the concentration of phosgene at a constant sampling time and flow rate. The degree of color change could be recorded by measuring the intensity of reflecting light (555 nm). The detection limit was 6 ppb for phosgene with a sampling time of 60 sec and a flow rate of 400 ml/min. Reproducibility tests showed that the relative standard deviation of response (n = 10) was 2.6% for 0.2 ppm phosgene. No interference was observed from ethanol (1 vol.%), trichloroethylene (1 vol.%), acetone (1 vol.%), carbon dioxide (4.9 vol.%), carbon monoxide (100 ppm), nitrogen dioxide (100 ppm), sulfur dioxide (50 ppm), hydrogen chloride gas (5 ppm), chlorine (3 ppm), acetic acid gas (24 ppm), ammonia (40 ppm), or benzyl chloride (20 ppm).  相似文献   

17.
Three major active components of the traditional Chinese medicinal herb Salvia miltiorrhiza Bunge, 3,4-dihydroxyphenyllactic acid, salvianolic acid B, and protocatechualdehyde, are separated and purified from a crude water extract in one step by isocratic hydrogen bond adsorption chromatography on cross-linked 12% agarose (Superose 12 HR 10/30). Separation is achieved by stepwise elution with mobile phases composed of mixtures of ethanol and acetic acid: 0-50 mL, 5% ethanol, 5% acetic acid; 50-100 mL, 20% ethanol, 20% acetic acid; and 100-200 mL, 30% ethanol, 30% acetic acid. The 3,4-dihydroxyphenyllactic acid is obtained with a purity of 97.3% and with a recovery of 88.1%. The corresponding figures for protocatechualdehyde are a purity of 99.4% with a recovery of 90.7%, and for salvianolic acid B a purity of 90.4% with a recovery of 50.3%, respectively. At a sample load of 40 mg crude extract dissolved in 0.5 mL mobile phase (corresponding to a load of 1.6 mg/mL gel), a 3,4-dihydroxyphenyllactic acid purity of approximately 94% with a recovery of 80.2% is obtained.  相似文献   

18.
相较于Wacker工艺进行乙醛工业化生产,发展多相催化体系实现乙醇直接无氧催化脱氢制乙醛和副产氢气,从生产工艺和经济价值方面无疑是一条更加安全高效的路线.在此,我们发展了一种高效、稳固的Cu/SiO2催化剂,用于乙醇的无受体催化脱氢.通过氨蒸发法制备得到高度分散的Cu颗粒,在没有任何平衡气体的纯乙醇进料条件下,显示出超强的热稳定性.活性组分Cu和载体SiO2之间的强相互作用,使其具有优异的催化性能.通过反应条件优化,在250℃下实现了较高的乙醇转化率(>40%)和乙醛选择性(>95%),且催化剂在固定床连续反应过程中可稳定运行超过400 h.  相似文献   

19.
A mini membrane inlet mass spectrometer (mini-MIMS) of a total weight of 12 kg was constructed using a miniature Multipole mass spectrometer, a small vacuum system and a flexible flat sheet membrane inlet, where the exposed membrane area can be changed by a factor of 80. The variable membrane area together with the possibility of operating the Multipole at pressures up to 1 x 10(-3) Torr made it possible to test the system with three microporous membranes (cellulose, polyether sulfone and polypropylene) normally not compatible with standard electron ionization MIMS systems and a standard non-porous polydimethylsiloxane membrane. We found that the hydrophilic cellulose and polyether sulfone membranes had selectivity characteristics opposite to those of the standard silicone membrane. They demonstrated preferential detection of hydrophilic compounds in hydrophobic organic solvents, whereas the silicone membrane preferentially detects hydrophobic organic compounds in aqueous solution. Using the cellulose membrane, organic contaminants and water could be detected in organic solvents at 10-100 ppm levels by weight, the relative high detection limits primarily caused by interference from a high chemical background from the solvent. When being used with the standard silicone membrane the mini-MIMS behaved just like most standard MIMS systems with detection limits of volatile organic compounds in water at concentrations just below 1 ppm. The hydrophobic microporous polypropylene membrane was not found to be useful with the mini-MIMS.  相似文献   

20.
Although data-dependent LC-MS-MS with database searching has become au courant for identifying proteins, the technique is constrained by duty-cycle inefficiency and the inability of most tandem mass analyzers to accurately measure peptide product ion masses. In this work, a novel approach is presented for simultaneous peptide fragmentation and accurate mass measurement using in-source collision-induced dissociation (CID) on electrospray ionization (ESI)-time-of-flight (TOF) MS. By employing internal mass reference compounds, mass measurement accuracy within +/-5 ppm for tryptic peptide precursors and +/-10 ppm for most sequence-specific product ions was consistently achieved. Analysis of a complex solution containing several digested protein standards did not adversely affect instrument performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号