首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive Blue 19 (RB 19), its reactive form (RB 19-VS) and its hydrolyzed form (RB 19-OH) were examined using liquid secondary ion mass spectrometry/tandem mass spectrometry (LSIMS/MS/MS) in the negative-ion mode under low-energy collision conditions (240–300 eV). Structurally characteristic fragment ions were obtained, none of which has been previously reported for these reactive dyes. Among the ions obtained were SO3? ions, ions due to central amino cleavage and reactive group cleavage, and ions due to loss of SO3 and SO2. Possible pathways for the formation of product ions are proposed. The structural information obtained should help to characterize and identify reactive dyes better.  相似文献   

2.
Eight monosulfonated and disulfonated azo dyes were analyzed using liquid secondary ion mass spectrometry/tandem mass spectrometry, in the negative ion mode, under low-energy collision conditions (110–150 eV). Many structurally characteristic fragment ions were obtained, several of which have not been reported previously using other mass spectrometric techniques. Among the structurally important ions observed were those due to loss of SO2, SO3 and various aromatic substituents, such as NO2 and NHCOCH3. Losses of N2 were also proposed. In addition, product ions due to cleavage at the azo linkage were observed, and also SO3? and HSO3? ions. Several of the azo cleavage product ions detected did not contain sulfonate groups. Possible pathways for the formation of product ions are proposed. The structural information obtained should help to better characterize and identify sulfonated azo dyes in the future.  相似文献   

3.
An acid‐terminated poly(amino)ester dendrimer was studied by electrospray ionization tandem mass spectrometry to establish its fragmentation pathways, with the aim of using them to investigate the structure of any defective molecules generated during the dendrimer synthesis. This poly(amino)ester dendrimer could be ionized in both polarities but the most structurally relevant dissociation pathways were found from the deprotonated molecule in negative ion mode. The dissociation pattern of this dendrimer is fully described and supported by accurate mass measurements. The main dissociation reactions of the negatively charged polyacidic dendrimer were shown to consist of (i) the release of carbon dioxide and ethene within a branch, which proceeds as many times as intact neutral branches are available; and (ii) the elimination of an entire dendrimer arm. Monitoring the occurrence of these reactions together with any deviation from these two main routes allowed six major dendritic impurities to be structurally characterized. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Porphyrin derivatives having a galactose or a bis(isopropylidene)galactose structural unit, linked by ester or ether bonds, were characterized by electrospray tandem mass spectrometry (ES-MS/MS). The electrospray mass spectra of these glycoporphyrins show the corresponding [M + H](+) ions. For the glycoporphyrins with pyridyl substituents and those having a tetrafluorophenyl spacer, the doubly charged ions [M + 2H](2+) were also observed in ES-MS with high relative abundance. The fragmentation of both [M + H](+) and [M + 2H](2+) ions exhibited common fragmentation pathways for porphyrins with the same sugar residue, independently of the porphyrin structural unit and type of linkage. ES-MS/MS of the [M + H](+) ions of the galactose-substituted porphyrins gave the fragment ions [M + H - C(2)H(4)O(2)](+), [M + H - C(3)H(6)O(3)](+), [M + H - C(4)H(8)O(4)](+) and [M + H - galactose residue](+). The fragmentation of the [M + 2H](2+) ions of the porphyrins with galactose shows the common doubly charged fragment ions [porphyrin + H](2+), [M + 2H - C(2)H(4)O(2)](2+), [M + 2H - C(4)H(8)O(4)](2+), [M + 2H - galactose residue](2+) and the singly charged fragment ions [M + H - C(3)H(6)O(3)](+) and [M + H - galactose residue](+). The fragmentation of the [M + H](+) ions of glycoporphyrins with a protected galactosyl residue leads mainly to the ions [M + H - CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2) - CO](+), [M + H - C(10)H(16)O(4)](+) and [M + H - protected galactose](+). The doubly charged ions [M + 2H](2+) fragment to give the doubly charged ions [porphyrin + H](2+) and the singly charged ions [M + H - protected galactose residue](+) and [M + H - CO(CH(3))(2)](+). For the porphyrins where the sugar structural unit is linked by an ester bond, [M + 2H](2+), ES-MS/MS showed a major and typical fragmentation corresponding to combined loss of a sugar structural unit and further loss of water, leading to the ion [M + 2H - sugar residue - H(2)O](2+), independently of the structure of the sugar structural unit. These results show that ES-MS/MS can be a powerful tool for the characterization of the sugar structural unit of glycoporphyrins, without the need for chemical hydrolysis.  相似文献   

5.
Trifluoromethylsulfonate (triflate) and bis(trifluoromethylsulfonyl)imide (triflimide) salts, well‐known Lewis acid catalysts, present some difficulty in their characterization. By using nitromethane as the solvent, useful electrospray mass spectra in positive and negative ion mode were obtained for salts of metals in oxidation states +2 and +3. In positive mode, addition of a strong Lewis base (triphenylphosphine oxide, TPPO), capable of displacing a triflate (TfO?) or a triflimide (Tf2N?) anion, is necessary for obtaining useful spectra. Under these conditions of solvent and added ligand, the most abundant ions were [M2+(A?)(TPPO)2]+ or [M3+(A?)2(TPPO)2]+ with A? = TfO? or Tf2N?. The MS/MS spectra of these diagnostic ions provide additional analytical information. The breakdown curves, in the form of % dissociated as a function of the ion activation energy, offer a mean for investigating the bonding in these ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Diisocyanates are highly reactive chemical compounds widely used in the manufacture of polyurethanes. Although diisocyanates have been identified as causative agents of allergic respiratory diseases, the specific mechanism by which these diseases occur is largely unknown. To better understand the chemical species produced when isocyanates are reacted with model peptides, tandem mass spectrometry was employed to unambiguously identify the binding site of four commercially-relevant isocyanates on model peptides. In each case, the isocyanates react preferentially with the N-terminus of the peptide. No evidence of side-chain/isocyanate adduct formation exclusive of the N-terminus was observed. However, significant intra-molecular diisocyanate crosslinking was observed between the N-terminal amine and a side-chain amine of arginine, when Arg was located within two residues of the N-terminus. Addition of multiple isocyanates to the peptide occurs via polymerization of the isocyanate at the N-terminus, rather than via addition of multiple isocyanate molecules to varied residues within the peptide. The direct observation of isocyanate binding to the N-terminus of peptides under these experimental conditions is in good agreement with previous studies on the relative reaction rate of isocyanate with amino acid functional groups.  相似文献   

7.
Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS/MS) was employed to analyze a poly(ester amide) sample (PEA-Bu) from the melt condensation of sebacic acid and 4-amino-1-butanol. In particular, we investigated the fragmentation pathways, the ester/amide bond sequences and the structure of species derived from side reactions during the synthesis. MALDI-TOF/TOF-MS/MS analysis was performed on cyclic species and linear oligomers terminated by dicarboxyl groups, carboxyl and hydroxyl groups and diamino alcohol groups. The sodium adducts of these oligomers were selected as precursor ions. Different end groups do not influence the fragmentation of sodiated poly(ester amide) oligomers and similar series of product ions were observed in the MALDI-TOF/TOF-MS/MS spectra. According to the structures of the most abundant product ions identified, the main cleavages proceed through a beta-hydrogen-transfer rearrangement, leading to the selective scission of the --O--CH2-- bonds. Abundant product ions originating from --CH2--CH2-- (beta-gamma) bond cleavage in the sebacate moiety were also detected. Their formation should be promoted by the presence of an alpha,beta-unsaturated ester or amide end group. MALDI-TOF/TOF-MS/MS provided structural information concerning the ester/amide sequences in the polymer chains. In the MALDI-TOF/TOF-MS/MS spectra acquired, using argon as the collision gas, of cyclic species and linear oligomers terminated by diamino alcohol groups, product ions in the low-mass range, undetected in the mass spectra acquired using air as the collision gas, proved to be diagnostic and made it possible to establish the presence of random sequences of ester and amide bonds in the poly(ester amide) sample. Furthermore, MALDI-TOF/TOF-MS/MS provided useful information to clarify the structures of precursor ions derived from side reactions during the synthesis.  相似文献   

8.
The pyrolyses of homologous poly(alkyl acrylate)s is reported with identification of the major pyrolyses products. A mechanism involving random homolytic scission of the chain followed by a series of intermolecular and intramolecular transfer reactions has been proposed for poly(methyl acrylate) by Cameron and Kane and further developed by Haken, Ho, Houghton, and Gunawan. This mechanism is demonstrated to be generally applicable to the poly(n-alkyl acrylate)s. Reaction mechanisms are postulated for the various products produced and ion fragmentation mechanisms for the mass spectra produced are shown.  相似文献   

9.
Evaluation of polymer end-capping reactions with the aid of electrospray ionisation tandem mass spectrometry techniques (ESI-MS(n)) allows characterisation of novel poly[(R, S)-3-hydroxybutanoic acid]-(a-PHB) telechelics, containing primary hydroxyl groups at both polymer chain ends. The chemical structures of individual mass-selected macromolecules of the well-defined a-PHB telechelics have been defined in this way, and fragmentation mechanisms have been proposed. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The dissociation of small poly(methacrylic acid) (PMAA) cations produced by electrospray was characterized by tandem mass spectrometry. Similarly to PMAA ions produced in the negative ion mode, the two electrosprayed cationic forms, namely [PMAA+Na]+ and [PMAA‐H+2Na]+, were shown to fragment via a major pathway consisting of successive dehydration steps. Elimination of a water molecule would occur between two consecutive acid groups in a charged‐remote mechanism and was shown to proceed as many times as pairs of acidic pendant groups were available. As a result, comparing the number of dehydration steps observed in the MS/MS spectrum of two consecutive oligomers from the polymeric distribution reveals the degree of polymerization of the molecule. Secondary less informative reactions were shown to consist of losses of CO and/or CO2, depending on the nature of the precursor ion. These fragmentation rules could be used to characterize PMAA‐based copolymers, as successfully demonstrated for a polymeric impurity in the tested PMAA sample. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Positive-ion fast atom bombardment (FAB) mass spectra are reported for a representative series of mono- and bisphosphonium halides derived from triphenylphosphine. The mass spectra of the monoalkyltriphenylphosphonium salts typically contain abundant intact cations that can be used to establish the cationic relative molecular mass and diagnostic fragment ions that allow the characterization of structural subgroups. Depending on the functional group substitution on the alkyl group, additional fragment ions are observed which are formed by loss of small neutral molecules from the intact cation and that can be used for the differentiation of isomeric phosphonium salts. Molecular dication are typically observed in the FAB mass spectra of the bisphosphonium salts when they are analysed in 3-nitrobenzyl alcohol. In addition, production of singly charged ions by clustering with a counter ion, decomposition involving removal of one of the charge centres and one-electron reduction are generally observed. Structurally diagnostic fragments are also obtained. The fragmentation pathways of the ions derived from the phosphonium salts were elucidated by precursor ion and product ion tandem mass spectrometric experiments. For the phosphonium salts containing a long-chain hydrocarbon alkyl group, high-energy collision-induced decomposition of the intact cation is needed to obtain unambiguous structural information.  相似文献   

12.
Pterostilbene, the dimethoxy derivative of resveratrol, has drawn much attention recently due to its potential beneficial health effects. The metabolic fate of pterostilbene, however, is not well understood. In the present study, we identified nine novel mouse urinary pterostilbene metabolites, pterostilbene glucuronide, pterostilbene sulfate, mono‐demethylated pterostilbene glucuronide, mono‐demethylated pterostilbene sulfate, mono‐hydroxylated pterostilbene, mono‐hydroxylated pterostilbene glucuronide, mono‐hydroxylated pterostilbene sulfate, and mono‐hydroxylated pterostilbene glucuronide sulfate, using liquid chromatography/atmospheric pressure chemical ionization and electrospray ionization tandem mass spectrometry. The structures of these metabolites were confirmed by analyzing the MSn (n = 1–3) spectra. To our knowledge, this is the first report of the identification of urinary metabolites of pterostilbene in mice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
4'-Aza-2',3'-dideoxyerythrofuranosyl derivatives of thymine (AdT, 1) and uracil (AdU, 2) are analogues of 2',3'-dideoxyribofuranosyl thymine (ddT, 3) and uracyl (ddU, 4). Compounds 1 and 2 are representative of a new class of antiviral agents where the sugar moiety is replaced by an isoxazolidine ring. The increasing importance of isoxazolidinyl nucleosides has encouraged the exploitation of simple mass spectrometric rules for unambiguously assigning their structure. The species 1, 2, 5 and 6 were therefore synthesized in order to evaluate the role of the basic centre of the modified sugar moiety in their gas-phase chemistry. The tandem mass spectra of these compounds are similar to those of the wild-type nucleosides and display fragment ions corresponding to [B + 2H](+),[M - BH](+) and [B + 27](+) species, where B is the nucleobase. The last species derives from a retrocycloaddition process which is less evident in 2'-deoxyribosides. This behaviour is consistent with protonation of the analytes at the pyrimidine rings. Model isoxazolidines, in which the nucleobase was replaced by a phenyl or a naphthyl moiety, displayed the expected behaviour of species with a localized charge on the N-O moiety of the isoxazolidine ring.  相似文献   

14.
A series of chalcones were characterized by electrospray ionization tandem mass spectrometry (MS(n)). Several ionization modes were evaluated, including protonation, deprotonation and metal complexation, with metal complexation being the most efficient. Collision-activated dissociation (CAD) was used to characterize the structures, and losses commonly observed include H(2), H(2)O, CO and CO(2), in addition to methyl radicals for the methoxy-containing chalcones. CAD of the metal complexes, especially [Co(II) (chalcone-H) 2,2'-bipyridine](+), allowed the most effective differentiation of the isomeric chalcones with several diagnostic fragment ions appearing upon activation of the metal complexes. MS(n) experiments were performed to support identification of some fragment ions and to verify the proposed fragmentation pathways. In several cases, MS(n) indicated that specific neutral losses occurred by stepwise pathways, such as the neutral loss of 44 u as CH3* and HCO*, or CH(4) and CO, in addition to CO(2).  相似文献   

15.
16.
17.
The mass spectral fragmentation behavior of ten iridoid glucosides (IGs) has been studied using electrospray ionization (ESI), collision-induced dissociation (CID), and quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). In the negative ESI mass spectra, the deprotonated [M-H](-) ion was observed for all of the ten IGs except gardoside methyl ester, while the formate adduct [M+HCOO](-) ion appeared to be favored by the presence of a methyl ester or a lactone group in the C-4 position when formic acid was added to the mobile phase. The CID MS/MS spectra of the [M-H](-) ions have been used for structural elucidation. Ring cleavages of the aglycone moiety have been observed in the MS/MS spectra, corresponding to (1,4)F(-), (2,6)F(-), (2,7)F(-), and (2,7)F(0) (-) ions, based on accurate mass measurements and the elemental compositions of the product ions. These characteristic ions gave valuable information on the basic structural skeletons. Furthermore, on the basis of the relative abundances of the fragment ions (1,4)F(-) and (2,7)F(-), different sub-classes, such as cyclopentane-type and 7,8-cyclopentene-type IGs, can be differentiated. Ring cleavage of the sugar moieties was also observed, yielding useful information for their characterization. In addition, the neutral losses, such as H(2)O, CO(2), CH(3)OH, CH(3)COOH, and glucosidic units, have proved useful for confirming the presence of functional substituents in the structures of the IGs. Based on the fragmentation patterns of these standard IGs, twelve IGs have been characterized in an extract of Hedyotis diffusa Willd. by means of ultra-performance liquid chromatography/Q-TOF MS/MS, of which six have been unambiguously identified and the other six have been tentatively identified.  相似文献   

18.
We report a 'top-down' approach for characterization of proteins, and identification of binding sites in protein-drug complexes using nanoelectrospray ionization hybrid quadrupole time-of-flight tandem mass spectrometry (nanoESI-MS/MS). The efficiency of direct fragmentation of intact protein ions and the feasibility of this method were initially demonstrated using several well-characterized proteins with different molecular weights including metallothionein (6126 Da), cytochrome c (horse, 12360 Da), myoglobin (horse, 16592 Da), and hemoglobin (human, 64453 Da). Simply varying collision energy without enzyme digestion and gel or LC separation generated a range of peptide fragments of these proteins. Over 80% of these peptide ions matched those in the SWISS-PROT database with mass accuracy of 8 to 32 ppm with external calibration. This technique was further applied to fragment a cisplatin-metallothionein complex to identify the binding sites, demonstrating a potential application in the study of drug-protein binding.  相似文献   

19.
The structural characterization of four steroidal saponin compounds involving two and three sugar groups, namely spirostanol saponins and furostanol saponins, were investigated by positive ion fast-atom bombardment (FAB), electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) techniques. Important structural information was obtained from collision-induced dissociation (CID) and FAB-MS spectra with different liquid matrices. It was found that a characteristic fragmentation involving the loss of 144 Da arising from the cleavage of the E-ring was observed when there was no sugar chain at the C-26 position. When a glucoside group was substituted at the C-26 position, this C-26 sugar moiety was preferentially eliminated. All of these compounds produced a major product ion with a stable skeleton structure at m/z 255. The results of this paper can assist structural analysis of mixtures of steroidal saponins.  相似文献   

20.
Eighteen isoprenylated flavonoids (8 flavanones, 3 flavanols, and 7 chalcones) isolated from Kushen or synthesized were studied by positive and negative ion electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)). Plausible fragmentation patterns were obtained by comparing their MS(n) spectra with each other, which were further supported by high-resolution MS data and two model compounds. It was shown that the 2'-OH group would make the C-ring of flavonoids studied more labile through a six-membered mechanism, resulting in base peaks of (1,3)A+ (positive mode) and (1,4)A(-) (negative mode). In addition, the 2'-OH is also responsible for the neutral loss of water in (+)ESI/MS(2) of flavanones. The neutral loss of water (or methanol) in (-)ESI/MS(2) of flavanols was elucidated by a E2 elimination mechanism. Different relative abundances (RA) of (1,3)A(+) and S(+) in (+)ESI/MS(2) spectra were used to discriminate flavanones with their open-ring products, chalcones, since the equilibrium for flavanone<-->chalcone isomerization in ESI ion source could not be obtained in positive mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号