首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Berger SA 《Talanta》1976,23(6):475-477
The solvent extraction of Cu(II) with chlorendic acid has been studied The composition of the extracted species appears to be a function of pH. In the pH range 3.2-4.6, a monomeric species exists [Cu(II)(L(2-)], while at pH values greater than 4.5, a dimer in the form of [Cu(II)(L(2-)). H(2)L](2) and/or [Cu(II)(HL(-))(2)](2) is extracted.  相似文献   

2.
3.
4.
The extraction coefficient of cadmium into 1,2-dichlorobenzene using isonitrosothiocamphor (HINTC) as a chelating agent at pH 8.5 is greater than 4585. It remains constant in the pH range of 7 to 10. The nature of the extracted species is ML2 as derived by the slope ratio method. A careful analysis of the effect of different groups on the extraction coefficient and separation factors of a number of ions against Cd(II) has been carried out. The separation factors for most of the elements is characteristically high.  相似文献   

5.
Solvent extraction of copper(II) from sulfate medium with N-(2-hydroxybenzylidene)aniline is studied with the following parameters: pH, concentration of the extractant, nature of diluent, and temperature. The extraction of copper(II) proceeds by a cation exchange mechanism and the extracted species are CuL2 in cyclohexane and toluene and CuL2 with some CuL2HL in chloroform. The equilibrium constants have been calculated as well as thermodynamic parameters ΔH°, ΔS°, and ΔG°. The temperature effect on the solvent extraction of copper(II) with N-(2-hydroxybenzylidene)aniline in cyclohexane is discussed.  相似文献   

6.
Yamada H  Taguchi Y  Wada H 《Talanta》1994,41(4):573-579
The effects of the phenyl substituent on the dimerization of copper(II) carboxylate in the solvent extraction of copper(II) with phenylacetic acid using benzene and 1-octanol as a solvent were investigated, at 25 degrees and at the aqueous ionic strength of 0.1M (NaClO(4)). The dimerization of copper(II) phenylacetate has been found to be written as: 2CuA(2)Cu(2)A(4) in 1-octanol, and 2CuA(2)(HA)(2)Cu(2)A(4)(HA)(2) + (HA)(2) in benzene, with the dimerization constants, log K = 2.24 and log K = 4.19, respectively. It was proved that the phenyl group inhibits the formation of the dimeric copper(II) phenylacetate, and its effect is partially shielded by a methylene substituent.  相似文献   

7.
Rapid methods have been described for the quantitative extraction of milligram amounts of Zn(II), Cu(II) and Sb(III) with TMBHA into chloroform. The separation factor for many elements was found to be at least greater than 104. The metal: reagent stoichiometry determined by methods like slope ratio, mole ratio and substoichiometric extraction were found to be 12 for Zn(II) and Cu(II), and 23 for Sb(III).  相似文献   

8.
EPR and spectrophotometric study on the products of ligand‐exchange taking place on mixing bis(diethyldiselenocarbamato)copper(II), [Cu(Et2dsc)2], and bis(diethyldithiocarbamato)copper(II), [Cu(Et2dtc)2], solutions is reported. EPR spectra monitored at room temperature for one month period reveal a stable equilibrium among the parents (chromophores CuS4 and CuSe4) and the obtained mixed‐chelate [Cu(Et2dtc)(Et2dsc)] complex (chromophore CuS2Se2) in heptane, hexane, benzene, toluene, acetone, DMFA, DMSO and dichloromethane. In CCl4 and CHCl3 two new additional EPR spectra appear attributed to the mixed‐chelate complexes with the chromophores CuSSe3 and CuS3Se which are not observed with electronic spectroscopy. The intensities of all five EPR spectra decrease with the time. It is assumed that the new mixed‐chelates observed in CCl4 and CHCl3 are obtained in a reaction of [Cu(Et2dtc)(Et2dsc)] or [Cu(Et2dtc)2] with the ester of diselenocarbamic acid which is formed in a parallel reaction of [Cu(dsc)2]with CCl4 or CHCl3.  相似文献   

9.
Equilibrium distribution coefficients have been determined for the extraction of cobalt(II) with 8-mercaptoquinoline as a function of pH and reagent concentraton at ambient temperature. The extractable complex is a diadduct, i. e. two molecules of the reagent are coordinated to the cobalt(II) chelate. The adduct formation constant in chloroform and the overall formation constant in the aqueous phase have been determined. Pyridine and its methyl derivatives were found to enhance the extraction of Co(II) into chloroform in the presence of 8-mercaptoquinoline. From the extraction equilibrium data, the adduct formation constants of 12 chelate to nitrogen base adducts were evaluated. The special role of steric factors is discussed.  相似文献   

10.
The liquid–liquid extraction of copper(II) from sulfate medium with di(2-ethylhexyl)phosphoric acid (D2EHPA, HL) at 25°C is studied with the following parameters: pH, concentration of the extractant, and the nature of diluent. The effect of the diluent using polar and nonpolar solvents in the extraction of copper(II) is discussed. The extracted copper(II) species were CuL2 in 1-octanol and methyl isobutyl ketone and CuL2 · 2HL in toluene, carbon tetrachloride, and cyclohexane. The extraction constants are evaluated for different diluents.  相似文献   

11.
12.
Gupta A  Khopkar SM 《Talanta》1995,42(10):1493-1496
A new method is proposed for the solvent extraction separation of cobalt(II) with hexaacetatocalix(6)arene in toluene. Cobalt(II) was extracted at pH 7.4 with 10 x 10(-4) M hexaacetocalix(6)arene, stripped with 2 M nitric acid, and determined spectrophotometrically at 500 nm as its complex with nitroso-R-salt. Cobalt was separated from any associated elements. The method was extended to the analysis of cobalt(II) in real samples such as vitamin B-12.  相似文献   

13.
The extraction behaviour of Cu(II) from hydrochloric acid and lithium chloride solutions with di-n-pentyl sulphoxide (DPSO) and di-n-octyl sulphoxide (DOSO) has been investigated over a wide range of conditions. At a given strength of the extradant, the extraction increases with increase in HCl and LiCl concentrations. The extraction of the metal also increases with increase in extractant concentration at constant [HCl] or [LiCl]. The species extracted would appear to be CuCl2·2DPSO/2DOSO and CuCl 4 2− ·2DPSO. The extraction of the metal decreases with increase in initial aqueous metal concentration and also with increase in temperature. The extraction also depends on the nature of the diluent employed.  相似文献   

14.
Singh T  Dey AK 《Talanta》1971,18(2):225-228
An extractive spectrophotometric procedure has been developed for the determination of palladium (II) at microgram levels. The palladium(II) chelate of 7-iodo-8-hydroxyquinoline-5-sulphonic acid is extracted into n-butanol. Extraction is maximal (95%) from 0.2M perchloric acid. Beer's law is valid at 430 nm over a wide range of palladium concentration from 2.5 ppm. The molar absorptivity is 958 1.mole(-1).mm(-1). The system can tolerate a large excess of Co(II), Ni(II), Rh(III), Pt(IV), Cr(III), W(VI), chloride, phosphate, citrate and tartrate. Small quantities of Ru(III), IR(III) and EDTA do not interfere, but serious interference is caused by Fe(III), V(V), Mo(VI) and Os(VIII).  相似文献   

15.
A method has been developed for the extraction of Zn(II) with ethylthioacetoacetate (HETAcAc) into ethyl acetate from an alkaline medium. Various parameters affecting the extraction of Zn(II) have been investigated. The stoichiometry of the extracted species has been determined by the slope-ratio method.  相似文献   

16.
17.
The extraction of cobalt(II) from sulfate medium of ionic strength 0.33?mol dm?3 by capric acid dissolved in chloroform has been carried out at 25°C. By using the slope analysis method, the stoichiometry of the organometallic complex extracted was determined. Cobalt(II) complex exists as a mononuclear species CoL2.2HL in the lower concentration region of capric acid and a binuclear ones (CoL2.2HL)2 in the higher concentration region. Extraction constants for each species were given. UV–visible and FTIR spectroscopy have also been used for the investigation of the extractant and their complexes. Electronic spectrum of cobalt(II) caprate species indicates the octahedral structure.  相似文献   

18.
The effects of pH have been examined on the extraction of the title ions by complexing with LIX-64N in kerosene. The extent of metal extraction as a function of pH is: Cu(II) < Fe(III) < Ni(II) < Zn(II) < Co(II). Stripping of all metal ions but cobalt with sulphuric acid from loaded kerosene complexing solutions is easily accomplished. Oxidation of Co(II) to Co(III) in the organic phase prevents stripping of this metal ion.  相似文献   

19.
Rauret G  Pineda L  Compaño R 《Talanta》1989,36(6):701-703
The distribution equilibrium of the lead-cnha complex in the water-methyl isobutyl ketone (MIBK) system has been studied at 25 degrees . From graphical treatment of the equilibrium data, it was deduced that PbL(2) is the complex extracted. By use of the program LETAGROP-DISTR, values for the distribution and the stability constants of PbL(2) have been calculated: log K(DC) = 1.84 +/- 0.11; log beta(1) = 6.68 +/- 0.09 and log beta(2) = 10.28 +/- 0.09. On the basis of these results and those of previous studies, a method for determination of lead(II), copper(II) and cadmium(II) by atomic-absorption spectrometry, after extraction with cnha and 4-methylpyridine into MIBK, is proposed.  相似文献   

20.
The synergistic solvent extraction of copper(II) from 0.33?mol?dm?3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C has been studied. The extracted species when capric acid was used alone is CuL2(HL)2. In the presence of TOPO, the extracted complex is CuL2(HL)2(TOPO). The TOPO–HL interaction strongly influences the synergistic extraction efficiency. The extraction constants were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号