首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2003,15(2):133-138
The preparation of a biosensor based on the enzymatic immobilization in polypyrrole polymer for the detection of antidepressant drugs is described. The enzyme monoamine oxidase (MAO) was immobilized by electropolymerization of pyrrole around a platinum electrode, at a constant potential of +0.75 V (vs. Ag/AgCl) in such a way to obtain a membrane thickness, which was constant and equal to 100 mC/cm2. The biosensor was obtained from a 0.1 M KCl saline solution containing pyrrole at a concentration equal to 0.4 M and 2.5 mU/mL of MAO. The biosensor was adapted to a continuous flow injection analysis system (FIA) with the amperometric detection of hydrogen peroxide produced by enzymatic reaction carried out at a potential of +0.7 V (vs. Ag/AgCl), pH 7.4 and temperature of 37 °C. In optimized flow conditions, the biosensor presented an analytical response for fluoxetine in the interval between 0.67 and 4.33 mM, with a detection limit of 0.10 mM. The analytical use of the biosensor developed was evaluated through analysis of commercial pharmaceutical products containing fluoxetine, available on the Portuguese market. The amperometric flow results obtained do not differ significantly from the values resulting from analysis of the same products by the method proposed by the US Pharmacopeia, with sampling rates of 20–25 samples/hour.  相似文献   

2.
《Electroanalysis》2006,18(23):2331-2336
In this work, we present a novel application of bismuth film electrodes (BiFE) for the direct analysis of the herbicide metamitron (4‐amino‐3‐methyl‐6‐phenyl‐1,2,4‐triazin‐5one) in nondeaerated solutions by square‐wave voltammetry (SWV) and differential pulse amperometry. Bismuth films were plated ex‐situ onto carbon paste electrodes (CPE) by 240 s deposition at ?0.600 V from a 0.10 M acetate buffer (pH 4.5) containing 0.50 mM bismuth nitrate. Metamitron SWV analytical signals were registered in 0.10 M acetate buffer (pH 4.5) solutions, where the herbicide reduction takes place at ?0.675 V. The metamitron signals obtained with BiFE have the double sensitivity and a 50 mV positive potential shift when compared to those obtained with plain CPE. Under these conditions, the dynamic linear range of concentrations is comprised between 10 and 200 μM and the detection limit is 2 μM.  相似文献   

3.
镉离子在H2SO4溶液中极谱行为的研究   总被引:1,自引:0,他引:1  
周本省  吴瑞鉴 《化学学报》1983,41(12):1121-1126
本文研究了在没有动物胶的0.5M H_2SO_4溶液中镉离子的极谱行为,得到了如下的结果:(1)在0.050~20.0mM CdSO_4 0.5M H_2SO_4的十种溶液中测得的电流-电位曲线都有良好的波形、恒定的极限扩散电流和易于确定的半波电位.这些曲线上都没有极谱极大出现;其极限扩散电流(波高)与镉离子的浓度成正比.在镉离子低浓度(0.050~0.20mM)时,半波电位保持不变,在镉离子高浓度(1.00~20.0mM)时,也仅有很小的变化.故镉离子在0.5MH_2SO_4,溶液中的电流-电位曲线可供定量和定性测定之用.(2)镉离子在低浓度时的极谱波是一种可逆波.(3)前人在H_2SO_4溶液中研究镉离子时之所以没有能得到令人满意的极谱行为的原因是他们在H_2SO4溶液中添加了动物胶的缘故.(4)作者从得到的波形良好的电流-电位曲线上,测定了25±0.2℃时镉离子在0.5M H_2SO_4溶液中的扩散电流常数、半波电位和电极反应中得失的电子数.结果如下: i_d/cm~(2/3)t~(1/6)=3.97μA/mM·mg~(2/3)·s~(-1/2) E_(1/2)=-1.011V(0.5M硫酸亚汞电极)=-0.559V(饱和甘汞电极) n=2 这些数据比Lingane的数据,扩散电流常数2.6μA/mM·mg~(2/3)·s~(-1/2)和半波电位-0.59V(饱和甘汞电极)],要合理些.  相似文献   

4.
Utilizing the fascinating properties of montmorillonite calcium (MMT-Ca), such as huge cationic exchange capacity, strong adsorptive ability, high chemical and mechanical stability, an MMT-Ca modified carbon paste electrode (CPE) was constructed for the sensitive determination of Pb2+. In 0.01 mol·L−1 HCl, Pb2+ was firstly exchanged and accumulated on an MMT-Ca modified CPE surface and secondly reduced to Pb at −0.90 V. In the following potential sweep from −0.90 to −0.50 V, reduced Pb was oxidized, resulting in an obvious stripping peak at −0.58 V. After optimizing the parameters, such as determining medium, content of MMT-Ca, accumulation potential and time, an electrochemical method was developed for the analysis of Pb2+. Compared with bare CPE, the MMT-Ca modified CPE significantly enhances the sensitivity of Pb2+ analysis. The limit of detection is evaluated to be 6.0 × 10−9 mol L−1 Pb2+. Finally, this method was successfully employed to determine trace levels of Pb2+ in water samples. The first two authors contribute equally do this work  相似文献   

5.
Cookeas EG  Efstathiou CE 《The Analyst》2000,125(6):1147-1150
Direct detection of ephedrines and other underivatized amino compounds (amines, alicyclic amines, alkanolamines, and amino acids) can be carried out via electrocatalytic oxidation at a carbon paste electrode (CPE) modified with cobalt phthalocyanine (CoPC) in alkaline solution (0.10 mol L-1 NaOH). Most of the amino compounds tested could be determined using the CoPC/CPE in an amperometric flow detector. The analytical signal of ephedrine was stabilised by alternating the potential between an anodic detection potential of +0.30 V (+0.45 V for other amino compounds) applied for 220 ms and a cathodic reactivation potential of -0.30 V applied for 100 ms (potentials versus SCE). The linear response range for ephedrine was within 1-100 mumol L-1 and the detection limit was 0.8 mumol L-1 with a 100 microL sample loop and a typical sampling ra 60 h-1. The signal (oxidation peak current) reproducibility was 2-3%. The method was applied to the determination of ephedrine in pharmaceutical formulations with results comparable to those obtained with a standard spectrophotometric method.  相似文献   

6.
The adsorptive behaviour of indigo on the surface of pre-treated carbon paste electrodes (CPE) has been studied in various aqueous media at different pH, by cyclic (CV) and alternating current voltammetry (ACV). Cyclic voltammograms of this molecule are characterised by two main electrodic processes in the potential range from −0.7 V to +0.9 V (vs. Ag/AgCl/sat. KCl), which are reversible in the pH range of 3–11, these being irreversible when both are recorded at pH 1. The first one at pH 1 becomes purely reversible when the applied potential range is from −0.2 V to +0.2 V and constitutes the best analytical signal. Due to these electrodic features a significant increase in sensitivity was achieved when the signal was recorded by alternating current voltammetry. Indigo was quantified by CV and ACV, in 0.1 M HClO4 pH 1 and 0.1 M Tris-HCl pH 7.2 solutions. Limits of detection in the sub-nanomolar range were achieved for a 5-min accumulation time by ACV. These data provides useful information about the suitability of this electrodic process as a detection scheme in the development of alkaline phosphatase (AP) based voltammetric affinity devices, in which indigo is generated by the enzymatic hydrolysis of the 3-indoxyl phosphate substrate.  相似文献   

7.
The electrochemistry and electrogenerated chemiluminescence (ECL) of two linear, stereoregular, and structurally defined PPV derivatives, poly[distyrylbenzene-b-(ethylene oxide)]s, with respective 12 and 16 of ethylene oxide repeat units in the backbone, abbreviated as DE-1 and DE-2, have been studied on glassy carbon and Pt electrodes in CH2Cl2 and CH3CN containing 0.10 M tetra-n-butylammonium perchlorate (TBAP). In CH2Cl2, a one-electron transfer, reversible oxidation at approximately 0.75 V vs Ag/Ag+ (10 mM AgNO3 in CH3CN) was observed for both polymers. Porous polymer films were electrochemically formed on the electrode with multiple cyclic potential scanning. Cast films of DE-1 and DE-2 on the electrode prepared from 1.0 mM of the corresponding CH2Cl2 solutions were used for studies in CH3CN containing 0.10 M TBAP due to their limited solubility in the solvent. A film-type of oxidation was found at approximately 0.80 V vs Ag/Ag+ in CH3CN when a scan rate of less than 1 V/s was used. The soluble oxidation product can be captured and reduced and then reoxidized in solution-phase at the electrode at a relatively high scan rate of, e.g., 2 V/s. ECL responses with a maximum emission at approximately 1.10 V vs Ag/Ag+ were obtained with the cast films in CH3CN (0.10 M TBAP) in the presence of 43 mM tri-n-propylamine (TPrA) after both TPrA and film were oxidized. The ECL is believed to be resulted from the interaction between the oxidized polymer species and the strong reducing TPrA free radical (TPrA*) generated after the deprotonation of TPrA*+ cation species.  相似文献   

8.
In this study, manganese oxide nanoparticles/reduced graphene oxide(MnOxNPs/rGO) was used as support for strong immobilization of flavin adenine dinucleotide(FAD). A thin film of rGO cast on the electrode surface, followed by performing electrodeposition of MnOxNPs at applied constant potential of +1.4 V vs. Ag/AgCl for 200 s. Finally, FAD was electrodeposited onto the rGO/MnOxNPs film by potential cycling between 1.0 to ?1.0 V in solution containing 1 mg ml?1 FAD. Electrochemical properties and catalytic activity of GCE/rGO‐MnOxNPs/FAD toward persulfate (S2O82?) reduction was investigated. Under optimized condition, the concentration calibration range, detection limit, and sensitivity were 0.1 μM–2 mM, 90 nM and 125.8 nA/μM, respectively, using hydrodynamic amperometry technique.  相似文献   

9.
Tian M  He YN  Wong JL 《Talanta》2001,55(2):349-356
A new procedure is described for the determination of NiS in a carbon paste electrode (CPE) by cathodic stripping voltammetry in pH 5 acetate. The method was developed with both synthetic NiS and millerite. A cathodic scan from +0.3 to -0.8 V with accumulation at +0.3 V for 60 s gave rise to a cathodic peak at ca. -0.5 V for NiS measurement. This cathodic peak was traced to the reduction of a sulfur-rich sulfide layer or sulfur, which could result from applying a positive potential to NiS. The current plot showed a linear range of 90-1180 mug and a detection limit of 20 mug NiS. The interference by Ni(3)S(2) was significant under these conditions, but was minimized by lowering the initial accumulation potential to 0.0 V. For validation, two series of known mixtures of NiS with either Ni(3)S(2) or NiS(2) were prepared in the following ratios: 9:1, 7:3, 5:5, 3:7, and 1:9. Recoveries of NiS from both series of mixtures were 93-109%, except for the 1:9 mixtures of NiS/Ni(3)S(2) or NiS/NiS(2), where recoveries of NiS were 152.0 and 120.0%, respectively. This method was applied to three millerite samples with pretreatment of CPE at -0.8 V for 30 s, which showed 34.80, 64.50 and 43.74 wt.% of NiS for the three samples. They correlated with 35.20, 60.80 and 39.70 wt.% of NiS, respectively, obtained by total nickel analysis of the acid digests of the mineral.  相似文献   

10.
Lin KC  Yin CY  Chen SM 《The Analyst》2012,137(6):1378-1383
This work presents that the electrocatalytic oxidation of NADH can be enhanced by the hybrid composites of polyluminol and functionalized multi-walled carbon nanotubes (MWCNTs). The hybrid composites can be easily prepared by the electropolymerization of luminol and the adsorption of functionalized MWCNTs. The modified electrode exhibits two redox couples which can show two electrocatalytic peaks at about 0.1 and 0.3 V (vs. Ag/AgCl) to NADH oxidation. The kinetic constant, k(kin), for the electrocatalytic oxidation of NADH, evaluated by chronoamperometry and voltammetry using a rotating disk electrode (RDE), provided values close to 10(5) M(-1) s(-1). At an applied potential of 0.1 V, the sensor provides a linear response range for NADH from 5 × 10(-6) up to 1.5 × 10(-4) M with a sensitivity of 183.9 μA mM(-1) cm(-2), and detection and quantification limits of 0.6 and 5 μM (S/N = 3), respectively.  相似文献   

11.
B Zeng  F Zhao  X Ding 《Analytical sciences》2001,17(2):259-264
Nickel hexacyanoferrate (NiHCF) film was prepared and characterized on gold and thiol self-assembled monolayers (SAMs)-modified gold electrodes. It was found that the film exhibited some different electrochemical characteristics compared with that found on a carbon electrode. In the presence of K+, the film exhibited a redox peak at about 0.5 V. The peak potential shifted linearly with the K+ concentration over the range of about 0.1 mM - 0.1 M with slopes of 54 - 60 mV per log[K+]. However, in solutions containing Na+, Li+ or NH4+ ion the film did not generate well-defined peaks, or even a visible redox peak. Therefore, the film showed a selective potential response to K+. The voltammetric behavior of NiHCF film varied with thiols, the preparation procedure and the solution pH. Under certain conditions, the characteristics of the film could be improved to some extent.  相似文献   

12.
《Electroanalysis》2005,17(17):1540-1546
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5‐dimercapto‐1,3,4‐thiadiazole (DTTPSG‐CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range ?0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L?1 KNO3 ; v=20 mV s?1) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG‐CPE. The anodic wave peak at 0.31 V is well‐defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg L?1 Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

13.
A method for the voltammetric determination of vanadium using a carbon paste electrode (CPE) was described. The new procedure is based on the adsorptive accumulation of the V(V)‐alizarin red S(ARS) complex onto the surface of the CPE, followed by the electrochemical reduction of adsorbed species. The optimal experimental conditions include the use of 0.10 mol/L acetate buffer (pH 5.1), 1.0×10?5 mol/L ARS, an accumulation potential of ?0.10 V (versus SCE), an accumulation time of 2 min, a scan rate of 200 mV/s and a second‐order derivative linear scan mode. The reduction peak for the complex appears at ?0.52 V. The peak current is proportional to the concentration of V(V) over the range of 0.10–15.0 μg/L, and the detection limit is 0.04 μg/L for a 2 min adsorption time. The relative standard deviations(n=8) for 2.0 and 0.50 μg/L V(V) are 3.1 and 4.7%, respectively. The proposed method was applied to the determination of vanadium in water samples.  相似文献   

14.
León LE 《Talanta》1996,43(8):1275-1279
Ascorbic acid (AA) is determined by amperometric detection based on the photochemical reduction of Methylene Blue (MB(+)) in 0.1 M phthalate buffer at pH 3.8. In this medium, MB(+) using flow-injection analysis. The carrier stream is 1 mM MB(+) is reduced quasi-reversibly at a glassy carbon electrode at -0.34 V vs. Ag/AgCl, while AA is oxidized irreversibly at about 0.3 V. The reactor is irradiated with a 500 W halogen lamp to facilitate the development of the photochemical reaction. A laboratory-built wall-jet electrode system was used. The Leucomethylene Blue formed in the reaction is detected at +0.050 V. At 2.2 ml min(-1) and using a sample loop of 43 mul, the method allows the determination of AA in the range 5.0-90.0 mug ml(-1), with a relative standard deviation of 1.3-4.8%, a detection limit of 1.9 mug ml(-1) and a sampling frequency of 45-50 h(-1).  相似文献   

15.
Jagner D  Sahlin E  Renman L 《Talanta》1995,42(10):1447-1455
A novel glassy carbon electrode design, permitting medium exchange in batch mode without loss of electrode potential control, has been used for the study of copper(I) and copper(II) species formed during constant current stripping oxidation of copper in chloride media. It was found that copper(II) species dominated at chloride concentrations below about 1 mM and that soluble copper(I) species dominated at chloride concentrations above about 100 mM. In the concentration range 1-100 mM, soluble copper(I) and copper(II) species are formed as well as solid copper(I) chloride, the latter giving rise to a split peak as it is further oxidised to copper(II). The experimental results agreed satisfactorily with computer calculated equilibria data using the haltafall program. The medium exchange procedure has, furthermore, been used for the determination of copper(II) in seawater reference samples, 7.5 M ammonium acetate/2.5 M acetic acid being used as stripping medium. The detection limit, after 15 min of electrolysis, was found to be 6 ng l(-1) (0.10 mM) and the relative precision 6-10%.  相似文献   

16.
The poly(4-aminobenzoic acid/o-toluidine) (4-AB/OT) modified carbon paste electrode (CPE) was fabricated by consecutive cyclic voltammetry. The poly(4-AB/OT) CPE shows catalytic activity for the oxidation of nitrite in 0.1 M phosphate buffer solution (pH 7). Due to the electrostatic interaction between the negatively-charged nitrite ions and the positively-charged poly(4-AB/OT) film, the operating potential for nitrite oxidation was shifted about 240 mV to negative side, compared to bare CPE. The catalytic peak current was found to be linear with the nitrite concentration in the range of 6–600 μM, with a correlation coefficient of 0.981, using amperometry. The sensitivity and limit of detection for the poly(4-AB/OT) CPE are about 187.4 μA/mM and 3.5 μM, respectively. The possible interferences from several common ions were tested. The developed sensor was also successfully applied to the determination of nitrite concentration in a mineral water sample.  相似文献   

17.
A simple, rapid and sensitive CE method coupled with electrochemiluminescence (ECL) detection for direct analysis of ibandronate (IBAN) has been developed. Using a buffer solution of 20 mM sodium phosphate (pH 9.0) and a voltage of 13.5 kV, separation of IBAN in a 30‐cm length capillary was achieved in 3 min. ECL detection was performed with an indium tin oxide working electrode bias at 1.6 V (versus a Pt wire reference) in a 200‐mM sodium phosphate buffer (pH 8.0) containing 3.5 mM Ru(bpy)32+ (where bpy=2,2′‐bipyridyl). Derivatization of IBAN prior to CE‐ECL analysis was not needed. Linear correlation (r=0.9992, n=7) between ECL intensity and analyte concentration was obtained in the range of 0.25–50 μM IBAN. The LOD of IBAN in water was 0.08 μM. The developed method was applied to the analysis of IBAN in a drug formulation and human urine sample. SPE using magnetic Fe3O4@Al2O3 nanoparticles as the extraction phase was employed to pretreat the urine sample before CE‐ECL analysis. The linear range was 0.2–12.0 μM IBAN in human urine (r=0.9974, n=6). The LOD of IBAN in urine was 0.06 μM. Total analysis time including sample preparation was <1 h.  相似文献   

18.
A method based on capillary electrophoresis with electrochemical detection has been developed for the separation and determination of mannitol, sucrose, glucose, and fructose in Ligustrum lucidum Ait. for the first time. Effects of several important factors such as the concentration of NaOH, separation voltage, injection time, and detection potential were investigated to acquire the optimum conditions. The detection electrode was a 300 μm diameter copper disc electrode at a working potential of +0.65 V (versus saturated calomel electrode (SCE)). The four analytes can be well separated within 13 min in a 40 cm length fused-silica capillary at a separation voltage of 12 kV in a 75 mM NaOH aqueous solution. The relation between peak current and analyte concentration was linear over about three orders of magnitude with detection limits (S/N = 3) ranging from 1 to 2 μM for all analytes. The proposed method has been successfully applied to monitor the mannitol and sugar contents in the plant samples at different growth stages with satisfactory assay results.  相似文献   

19.
A direct chiral ligand-exchange chromatographic method was developed to monitor L-alanine production by fermentation. A mobile phase containing aqueous 0.25 mM Zn2+ solution is utilized to separate amino acids in the fermentation medium. The detection limit for L-alanine is 0.5 ppm and the analysis time for one sample is about 8 min. As sample preparation is simple and the matrix effects are minimal, the assay is fast and convenient. The results indicate that the method has potential for the analysis of complicated fermentation media.  相似文献   

20.
《Electroanalysis》2004,16(19):1561-1568
A new methodology, based on silver electrocatalytic deposition and designed to quantify gold deposited onto carbon paste electrode (CPE) and glassy carbon electrode (GCE), has been developed in this work. Silver (prepared in 1.0 M NH3) electrodeposition at ?0.13 V occurs only when gold is previously deposited at an adequate potential on the electrode surface for a fixed period of time. When a CPE is used as working electrode, an adequate oxidation of gold is necessary. This oxidation is carried out in both 0.1 M NaOH and 0.1 M H2SO4 at oxidation potentials. When a GCE is used as working electrode, the oxidation steps are not necessary. Moreover, a cleaning step in KCN, which removes gold from electrode surface, is included. To obtain reproducibility in the analytical signal, the surface of the electrodes must be suitably pretreated; this electrodic pretreatment depends on the kind of electrode used as working electrode. Low detection limits (5.0×10?10 M) for short gold deposition times (10 min for CPE and 5 min for GCE) were achieved with this novel methodology. Finally, sodium aurothiomalate can be quantified using silver electrocatalytic deposition and GCE as working electrode. Good linear relationship between silver anodic stripping peak and aurothiomalate concentration was found from 5.0×10?10 M to 1.0×10?8 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号