首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Adsorption of fluoride ions onto carbonaceous materials   总被引:9,自引:0,他引:9  
The characteristics of fluoride ion adsorption onto carbonaceous materials were derived as adsorption isotherms at different temperatures and in different pH solutions. The fluoride ion was adsorbed into pores in carbonaceous materials produced from wood; the larger the specific surface area, the more fluoride ions adsorbed. Bone char was the most effective adsorbent. The composition of bone char includes calcium phosphate, calcium carbonate, and so on. This suggests that the phosphate ion in bone char was exchanged with a fluoride ion. Moreover, the mechanism of fluoride ion adsorption onto bone char is clearly chemical in nature because the amount of fluoride ion adsorbed onto bone char increased with increasing temperature and decreasing pH. The amount of fluoride ion adsorbed onto bone char was also shown to depend on the concentration of sodium chloride in solution because of the "salting-out" effect. The adsorption of fluoride ion onto bone char is endothermic. Bone char can be utilized to remove fluoride ions from drinking water.  相似文献   

2.
Statherin is an active inhibitor of calcium phosphate precipitation in the oral cavity. For many studies of the interaction between statherin and hydroxyapatite (HAp), the samples are prepared by a direct mixing of statherin or its fragment with well-crystalline HAp crystals. In this work, the HAp sample is precipitated in the presence of peptide fragment derived from the N-terminal 15 amino acids of statherin (SN-15). The in situ prepared HAp crystallites are nanosized, leading to a significant increase of the peptide amount adsorbed on the HAp surface. The enhancement in NMR sensitivity allows, for the first time, the measurement of a two-dimensional 13C-13C correlation spectrum for a 13C uniformly labeled peptide sample adsorbed on mineral surface. The measurement time is about 18.5 h at a field strength of 7.05 T. Preliminary results suggest that there may exist two different mechanisms for the interaction between SN-15 and HAp. In addition to the one which will cause a conformational change near the N-terminal, SN-15 may also be absorbed on the HAp surface by simple electrostatic interaction, without any significant conformational changes of the peptides.  相似文献   

3.
Nanosized hydroxyapatite(nsHAp) was synthesized to examine its possibility as a controlled release carrier of protein. To achieve effective protein release from nanosized hydroxyapatite, the study of the adsorptive properties of protein on nsHAp and different influence parameters such as pH, calcium, and phosphate concentrations during the adsorption process is necessary. Ovalbumin(OVA) was selected as the model of growth factors. The results show that the amount of OVA adsorbed onto nsHAp in acetic buffer(pH=3.6) is more than that in acetic buffer(pH=5.6) because of the electric interaction. The amount of OVA adsorption in phosphate buffer solution(PBS) is smaller than that in acetic buffer because of surface complexation and surface hydroxylation. The presence of Ca2 dramatically increases the adsorbed amount of OVA in acetic buffer on maintaining the same pH. Meanwhile, the release kinetics of OVA adsorbed onto nsHAp(nsHAp-OVA) was also examined. The amount of released OVA in PBS(pH=5.6) was significantly smaller than that released in solution of pH=7.0. All the results suggest that nanosized hydroxyapatite particles could be successfully used as controlled released carrier of protein.  相似文献   

4.
The role of the acidic amino acid residues in the adsorption of peptides/proteins onto stainless steel particles was investigated using a peptide fragment from bovine beta-lactoglobulin, Thr-Pro-Glu-Val-Asp-Asp-Glu-Ala-Leu-Glu-Lys (T5 peptide), which has a high affinity to a stainless steel surface at acidic pHs, and its mutant peptides substituted with different numbers of acidic amino acid residues. The adsorption behavior of the mutant peptides as well as the T5 peptide were studied at pH 3 with respect to concentration and ionic strength dependencies and the reversibility of the adsorption process. The behavior of the peptides was generally characterized as two distinct irreversible adsorption modes, Mode I and Mode II. In Mode I, the amounts adsorbed lay on the ordinate at zero equilibrium concentration in the solution, while in Mode II, the amount adsorbed increased with increased equilibrium concentration. The area occupied by the peptides was predicted by molecular mechanics and molecular dynamics. The state of the peptides, when adsorbed, was investigated using FT-IR analysis. The FT-IR analyses revealed that the side carboxylic groups of the peptides adsorbed on the stainless steel surface were ionized, while they were unionized in the solution at pH 3. Thus, the interactions between the carboxylic groups of the peptide and the stainless steel surface can be considered to be largely electrostatic. The peptide having four acidic amino acid residues took a maximum adsorbed amount, the reason for which is discussed.  相似文献   

5.
The radioactive tracer method was used to investigate the adsorption of iodide and europium ions from aqueous solution on dried isoelectric precipitates of silver sulfide, silver iodide and silver bromide. The relationship between the amount of iodide ions adsorbed on Ag2S and the iodide ion and HNO3 concentrations in the solution was determined. It was shown that the iodide ions adsorbed on Ag2S could be desorbed with sulfide ions. Using Ag2S, AgI and AgBr precipitates, a relationship between the europium ion adsorption and Eu(NO3)3, H2S, NaI, NaBr and NaCl concentration in solution was established. The adsorption of europium ions was also assessed in respect to the presence of lanthanum and barium ions. For adsorption measurement iodide and europium ions were labeled with their radioactive isotopes and the amounts adsorbed were determined from the measured radioactivities of the precipitates after reaching the equilibrium between the solid phase and the solution.  相似文献   

6.
Removal of phosphate by aluminum oxide hydroxide   总被引:17,自引:0,他引:17  
The development and manufacture of an adsorbent to remove phosphate ion for the prevention of eutrophication in lakes are very important. The characteristics of phosphate adsorption onto aluminum oxide hydroxide were investigated to estimate the adsorption isotherms, the rate of adsorption, and the selectivity of adsorption. Phosphate was easily adsorbed onto aluminum oxide hydroxide, because of the hydroxyl groups. The adsorption of phosphate onto aluminum oxide hydroxide was influenced by pH in solution: the amount adsorbed was greatest at pH 4, ranging with pH from 2 to 9. The optimum pH for phosphate removal by aluminum oxide hydroxide is 4. The selectivity of phosphate adsorption onto aluminum oxide hydroxide was evaluated based on the amount of phosphate ion adsorbed onto aluminum oxide hydroxide from several anion complex solutions. It is phosphate that aluminum oxide hydroxide can selectively adsorb. The selectivity of phosphate onto aluminum oxide hydroxide was about 7000 times that of chloride. This result indicated that the hydroxyl groups on aluminum oxide hydroxide have selective adsorptivity for phosphate and could be used for the removal of phosphate from seawater.  相似文献   

7.
The leached residue, generated after selective extraction of Cu, Ni, and Co in sulfur dioxide-ammonia leaching of manganese nodules, was characterized and batch isothermal adsorption experiments were conducted at ambient temperature to evaluate the effectiveness of the water-washed leached residue for removal of different bivalent metal ions from aqueous synthetic solutions. The effects of pH, initial metal ion concentrations, amount of adsorbent, interfering ions, and heat treatment were also investigated. The uptake of metal ions increased with increasing pH. Under identical conditions the adsorption capacity increased in the order Cd(2+)相似文献   

8.
The adsorption of 14 trivalent lanthanoid ions and yttrium ion (denoted by Ln3+) on calcite surfaces was investigated under various solution conditions of pH (pH = 6.8-7.8) and calcium ion concentration (pCa = -log[Ca2+]= 2.0 and 3.0), and different surface conditions of calcite crystals (well-developed and rough surfaces). The lanthanoid ions were equilibrated in a solution of ionic strength 0.1 mol dm-3(NaCl) saturated with calcite at 25.0 degrees C using excess (solid) calcite crystals suspended in solution. The concentrations of the lanthanoid ions on the calcite crystals (C(cry)/mol kg-1) and in solution (C(soln)/mol dm-3) were determined by means of inductively coupled plasma-mass spectrometry (ICP-MS). It is found that the distribution ratio (D=C(cry)/C(soln) decreases as the atomic number of the lanthanoid increases showing the so called Tetrad Effect. D values increase with increasing pH, whereas they are independent of the calcium ion concentration (i.e., carbonate ion concentration). These results indicate that lanthanoid ions are adsorbed on the calcite surface together with hydroxide ions, i.e., the adsorption of hydroxo-complexes. The heavy lanthanoid ions (Er3+ to Lu3+) are adsorbed as monohydroxo-complexes, (Ln(OH)2+), whereas those of the light lanthanoids are predominantly adsorbed as dihydroxo-complexes (Ln(OH)2+). Other lanthanoids show competitive adsorption reactions of mono- and dihydroxo complexes. Both successive adsorption constants of hydroxo complexes increase with decreasing atomic number of the lanthanoid. The rough surface of calcite is quite active and the distribution ratio of the lanthanoid ions on the rough surface is much higher than that on the well-developed crystalline surface. Rates of adsorption of lanthanide ions were measured and mechanisms are being discussed  相似文献   

9.
The adsorption of a reactive dye, Reactive Yellow 84, from aqueous solution onto synthesized hydroxyapatite was investigated. The experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, absorbent dosage, initial dye concentration, temperature and pH of dye solution. The experimental results show that the amount of dye adsorbed increases with an increase in the amount of hydroxyapatite. The maximum adsorption occurred at the pH value of 5. The equilibrium uptake was increased with an increase in the initial dye concentration in solution. The experimental isotherm data were analyzed using Langmuir isotherm equation. The maximum monolayer adsorption capacity was 50.25 mg/g. The adsorption has a low temperature dependency and was endothermic in nature with an enthalpy of adsorption of 2.17 kJ mol−1.  相似文献   

10.
In this study, a HAp/NaP nanocomposite was prepared by adding a synthesized nano-hydroxyapatite to zeolite NaP gel in the hydrothermal condition and used for the removal of lead(II) and cadmium(II) ions from aqueous solution. HAp/zeolite nanocomposite was then characterized by Fourier transform infrared spectroscopy, X-ray diffraction and Rietveld method, scanning electron microscope, energy-dispersive X-ray analysis, and surface area and thermal analyses. Results suggested that the nanocomposite crystals of HAp were dispersed onto the zeolite external surface and/or encapsulated within the zeolite channels and pores. The potential of the composite in adsorption of heavy metals was investigated by using batch experiment. The metal concentration in the equilibrium C e (mg/g) after adsorption with nanocomposite of HAp/NaP was analyzed using flame atomic adsorption spectrometry. The adsorption experiments were carried out at pH of 3–9. The influences of contact time, initial concentration, dose, and temperature on the adsorption of lead and cadmium ions were also studied. Results show that these nanocomposites have further adsorption related to NaP and HAp. They have great potential (about 95 %) for Pb(II) and Cd(II) adsorption at room temperature. The equilibrium process was described by Frendlich, Langmuir, Temkin, and Dubinin–Radushkevich (D-R) models. The kinetics data were successfully fitted by a pseudo-second-order model. The in vitro antibacterial activity of these composites was evaluated against Bacillus subtilis (as Gram-positive bacteria) and Pseudomonas aeruginosa (as Gram-negative bacteria) and compared with standard drugs that show inhibition on bacterial growth.  相似文献   

11.
The thermodynamic characteristics of heavy metals adsorbed onto urban soil and the relative adsorption mechanisms were studied by the batch experiment. The results show that there existed dynamic adsorption-desorption equilibrium processes of cationic and anionic ions of heavy metals onto urban soil, which may have an impact on the pH of the adsorption system. The amounts of heavy metals adsorbed onto urban soil increased with the increase of the equilibrium concentration, but their adsorption amounts were not the maximum adsorption amounts. The higher the pH was, the greater the adsorption capacity of the urban soil at the same equilibrium concentration was, and the adsorption amounts of heavy metals onto urban soil followed the order of Pb>Cu>Cd>Zn>Ni. There were coordination reaction, hydrolysis reaction, exchange reaction in the adsorption processes of heavy metals onto urban soil. With the increase of pH, the influencing degree of pH on the different reactions of heavy metals in the soil increased, meanwhile the effects of other physicochemical properties of soil on the adsorption of heavy metals were weakened.  相似文献   

12.
In this study, we investigated the surface properties of granulated boehmite with vinyl acetate (G-BE20) and measured the amount of phosphate it adsorbed and the effect of contact time and solution pH on the adsorption process. The specific surface area (144.9?m2/g) and the number of surface hydroxyl groups (0.88?mmol/g) of G-BE20 were smaller than those of virgin boehmite (BE), which gave a specific surface area and number of surface hydroxyl groups of 297.0?m2/g and 1.08?mmol/g, respectively. The amount of phosphate adsorbed increased with the temperature. The isotherm model of Langmuir was used to fit experimental adsorption equilibrium data for phosphate adsorption onto G-BE20. The calculated thermodynamic parameters show the spontaneous and endothermic nature of the adsorption process. The equilibrium adsorption onto G-BE20 was reached within 16?h and the amount of phosphate adsorbed was 8.4?mg/g. The kinetic mechanism of phosphate uptake was evaluated with two different models: the Largergren pseudo first- and pseudo second-order models. The data obtained showed a better fit to the pseudo second-order model (0.991) than to the pseudo first-order model (0.967), as indicated by the r values. The rate constants for the adsorption of phosphate onto G-BE20 were calculated as 0.481?1/h and 0.029?g/mg?h. The adsorption of phosphate onto G-BE20 was the maximum in the pH range 3.0-4.0.  相似文献   

13.
Concentrations of phosphate and calcium ions, liberated from the surface of hydroxyapatite (HAP) during the adsorption of phosphoserine (PSer), were determined at 30°C. HAP showed a marked incongruent dissolution behavior in the presence of PSer. That is, the concentration of phosphate ion in solution increases with the addition of PSer due to the ion-exchange between PSer and phosphate ion on HAP (molar ratio of the former to the latter=32), whereas the concentration of calcium ion decreases with this release of phosphate ion, because the solubility product of HAP restricts the concentrations of both ions in solution (calculated values of — log (Ca2+)10 (PO 4 3– )6 (OH)2 were 115.8±1.0). The affinity of PSer to HAP was highest at pH 5.8 where the PSer and the HAP surface had the opposite charges. This electrostatic attraction force between PSer and HAP was shielded to some extent by the addition of KCl.  相似文献   

14.
Single‐, double‐, and multi‐walled carbon nanotubes (SWCNTs, DWCNTs, and MWCNTs), and two oxidized MWCNTs with different oxygen contents (2.51 wt % and 3.5 wt %) were used to study the effect of the wall number and surface functionalization of CNTs on their adsorption capacity and adsorption–desorption hysteresis for heavy metal ions (NiII, CdII, and PbII). Metal ions adsorbed on CNTs could be desorbed by lowering the solution pH. Adsoprtion of heavy metal ions was not completely reversible when the supernatant was replaced with metal ion‐free electrolyte solution. With increasing wall number and amount of surface functional groups, CNTs had more surface defects and exhibited higher adsorption capacity and higher adsorption–desorption hysteresis index (HI) values. The coverage of heavy metal ions on the surface of CNTs, solution pH, and temperature affect the metal ion adsorption–desorption hysteresis. A possible shift in the adsorption mechanism from mainly irreversible to largely reversible processes may take place, as the amount of metal ions adsorbed on CNTs increases. Heavy metal ions may be irreversibly adsorbed on defect sites.  相似文献   

15.
A new type of ion exchange fiber for the removal of fluoride, phosphate, and arsenate ions has been developed. A batch adsorption technique for investigating adsorption kinetic and equilibrium parameters and determining pH adsorption edges is applied. It is shown that the adsorption properties of the ion exchange fiber for fluoride, phosphate, and arsenate ions depend on the pH value and anion concentration. The adsorption of arsenate on the sorbent reaches a maximum of 97.9% in the pH value range of 3.5 to 7.0. The adsorption percentage of phosphate is more than 99% in the pH range of 3.0 to 5.5. The adsorption of fluoride on the ion exchange fiber is found to be 90.4% at pH 3.0. The Freundlich model can describe the adsorption equilibrium data of fluoride, arsenate, and phosphate anions. The sorption of the three anions on the ion exchange fiber is a rapid process, and the adsorption kinetic data can be simulated very well by the pseudo-second-order rate equation. The column performance is carried out to assess the applicability of the ion exchange fiber for the removal of fluoride, phosphate, and arsenate ions from synthetic wastewaters with satisfactory removal efficiency. The desorption experiment shows that fluoride ion sorbed by the fiber column can be quantitatively desorbed with 5 mL of 0.50 mol/L NaOH at elution rate of 1 mL/min, and 30 mL of NaOH is necessary for the quantitative recovery of phosphate and arsenate ions.  相似文献   

16.
A new surfactant-mediated approach was developed to synthesize hydroxyapatite (HAp) nanoparticles with high surface areas by calcination of their precursors encapsulated with calcium stearate using mixed surfactant-containing reaction mixtures. Acidic aqueous solution of calcium phosphate was mixed with both or either nonaoxyethylene dodecyl ether (C12EO9) and polyoxyethylene(20) sorbitan monostearate (Tween 60) and then was treated with aqueous ammonium at 25 degrees C. The C12EO9-based single surfactant system yielded an aggregate of platy HAp nanoparticles 20-40 nm in size, whereas the Tween 60-based single and mixed systems led to lath-shaped HAp nanoparticles 2-8 nm wide and encapsulated with calcium stearate. On calcination at 500 degrees C, the stearate-encapsulated HAp nanoparticles in the latter two systems were deorganized into high surface area HAp nanoparticles. Particularly, the HAp nanoparticles in the mixed system exhibited a specific surface area as high as 364 m2 g(-1) that is roughly 3 times larger than 160 m2 g(-1) for those in the single system. The significantly high surface area for the former is attributed to much less adhesion of decapsulated HAp nanoparticles, which originated from the particle-separating effect of the C12EO9 molecules adsorbed on the outer surface of the stearate-encapsulated HAp nanoparticles to inhibit their agglomeration or interfacial coordination. The present results demonstrate that the mixed use of two different surfactants as a source of encapsulating and templating agent and a particle-separating agent is specifically effective for the synthesis of high surface area HAp nanoparticles.  相似文献   

17.
In this study the preparation of three polyvinylpyridinium fluorides with different hexadecyl group contents is described. Their adsorption on hydroxyapatite (the main constituent of dental enamel) was studied as a function of time and concentration. It was found that increasing hexadecyl group content resulted in lower amounts of adsorbed polymer. The adsorption of the polyelectrolytes is accompanied with the uptake of fluoride by hydroxyapatite at a higher rate and with greater amounts. Phosphate ions present in aqueous suspensions of hydroxyapatite were responsible for this phenomenon. Desorption experiments showed that the adsorption of these macromolecules was irreversible in water. Excess calcium resulted to some extent in desorption.  相似文献   

18.
Mucor rouxii biomass (MRB) was found to be most potent sorbent for the removal of copper from its aqueous solution. Maximum adsorption was noted within pH range 5.0-6.0, and the process follows Langmuir adsorption isotherm (r2=0.998). Adsorption process is very fast initially and reaches equilibrium very quickly following pseudo second order rate kinetics. Amino, carboxyl and phosphate groups present on the cell surface of the biomass are involved in chemical interaction with copper ion as revealed from FTIR and SEM-EDX study and also by blocking experiments. Both SEM and AFM micrographs revealed the formation of metal nanostructure on the biomass surface due to copper adsorption. Biomass surface modification indicates the major involvement of amino functional group for the binding probably through the chelation. Copper ion can be eluted from the adsorbed biomass with 0.1M hydrochloric acid.  相似文献   

19.
Competitive adsorption is the usual situation in real applications, and it is of critical importance in determining the overall performance of an adsorbent. In this study, the competitive adsorption characteristics of all the combinations of binary mixtures of aqueous metal ion species Ca2+(aq), Cd2+(aq), Pb2+(aq), and Hg2+(aq) on a functionalized activated carbon were investigated. The porous structure of the functionalized active carbon was characterized using N2 (77 K) and CO2 (273 K) adsorption. The surface group characteristics were examined by temperature-programmed desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, acid/base titrations, and measurement of the point of zero charge (pHpzc). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for both single-ion and binary mixtures of these species. Hydrolysis of metal species in solution may affect the adsorption, and this is the case for adsorption of Hg2+(aq) and Pb2+(aq). Competitive adsorption decreases the amounts of individual metal ions adsorbed, but the maximum amounts adsorbed still follow the order Hg2+(aq) > Pb2+(aq) > Cd2+(aq) > Ca2+(aq) obtained for single metal ion adsorption. The adsorption isotherms for single metal ion species were used to develop a model for competitive adsorption in binary mixtures, involving exchange of ions in solution with surface proton sites and adsorbed metal ions, with the species having different accessibilities to the porous structure. The model was validated against the experimental data.  相似文献   

20.
The adsorption of lignin on cellulose fibres at neutral pH and the effects of calcium ions and a cationic polyelectrolyte (PDADMAC) on the adsorption have been studied. The surface coverage by lignin was determined by electron spectroscopy for chemical analysis (ESCA). The morphology of the lignin layer was studied by atomic force microscopy (AFM). The effect of adsorbed polyelectrolyte and lignin on the strength properties of the paper was also studied. The adsorbed amount of lignin increased monotonically with lignin concentration. Addition of calcium ions resulted in a very high surface coverage by lignin. PDADMAC did not enhance the adsorption of lignin, but without addition of polyelectrolyte the lignin was very weakly attached to the fibre surface. PDADMAC formed complexes with lignin in solution. At high polymer/lignin concentration ratios the charge of the complex was positive and it adsorbed irreversibly as large blobs. At low ratios the complex was easily washed away from the fibre surface. When PDADMAC was pre-adsorbed on the fibre surface the lignin adsorbed as small granules at all lignin concentrations. Neither PDADMAC nor lignin alone increased the strength of pulp sheets significantly. However, together they increased the bonding between fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号