首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation reactions between Tl+ and Ag+ ions and several crown ethers have been studied conductometrically in acetonitrile, acetone and dimethylformamide solutions at 25°C. The stability constants of the resulting 1:1 complexes were determined, and found to decrease in the order DA18C6>DC18C6>DB30C10>18C6>DB21C7>DB24C8>DB18C6>B15C5 >12C4, in the case of Tl+ complexes, and in the order DA18C6>DC18C6>18C6>DB18C6 >DB24C8>DB30C10B15C5>DB21C7 for Ag+ complexes. There is an inverse relationship between the stabilities of the complexes and the Gutamnn donicity of the solvents. The influence of a number of atoms in the macrocycle and of substituents in the polyether ring on the stability of the complexes is discussed.  相似文献   

2.
A conductance study concerning the interaction between ammonium ion and several crown ethers in acetonitrile solution has been carried out at different temperatures. The stability constants of the resulting 11 complexes at various temperatures were determined from the molar conductance-mole ratio data and found to vary in the order DC18C6>18C6>DB30C10>DB21C7>DB24C8>DB18C6>15C5>B15C5. The enthalpy and entropy of complexation were determined from the temperature dependence of the formation constants. The influence on the thermodynamic data of different parameters such as cavity size and dimensionality of crown ethers, nature of substituents in the polyether ring, conformations of the free and complexed ligands, solvent-ligand interaction and number of N–H bonds available for hydrogen bonding are discussed.  相似文献   

3.
The formation of ammonium complexes with several crown ethers and cryptands in nitrobenzene, acetonitrile and dimethylformamide solutions was investigated by conductometry at 25°C. Stability constants of the resulting 1:1 complexes sere determined from the molar conductance-mole ratio data and found to vary in the order DC18C6>18C6>DB30C10>DB21C7>DB24C8>DB18C6>15C5>B15C5>12C4, in the case of crown complexes, and in the order C222>C221>C211>C22>C21 for the ammonium cryptates. The stabilities of the complexes varied inversely with the Gutmann donicity of the solvents. Influences of the number of members in the macrocycle, nature of the substituents in the polyether ring, cavity size and dimensionality, conformations of the free and complexed ligands and number of N+–H bonds available for hydrogen bonding are discussed.  相似文献   

4.
7Li NMR measurements were employed to monitor the stoichiometry andstability of Li+ ion complexes with 12-crown-4 (12C4), 15-crown-5 (15C5), benzo-15-crown-5 (B15C5) l8-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6) and dibenzo-18-crown-6 (DB18C6) in binary acetone-nitrobenzene mixtures of varying composition. In all cases studied, the variation of 7Li chemical shift with the crown/Li+ mole ratio indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation that relates the observed chemical shifts to the formation constant. In all solvent mixtures used, the stabilities of the resulting 1:1 complexes varied in the order15C5 > B15C5 > DC18C6 > 18C6 > 12C4 >DB18C6. It was found that,in the case of all complexes, an increase in the percentage of acetone in thesolvent mixtures significantly decreased the stability of the complexes.  相似文献   

5.
A conductance study concerning the interaction between hydronium ion and several crown ethers in acetonitrile, nitrobenzene and 1,2-dichloroethane solutions has been carried out at 25°C. The stability constants of the resulting 1:1 complexes in acetonitrile and nitrobenzene solutions were determined from the molar conductance-mole ratio data and found to vary in the order 18C6>DB30C10>DC18C6>DB18C6>DB21C7>DB24C8>B15C5. In 1,2-dichloroethane solution, the complexation process results in the dissociation of ion pairs. There is an inverse relationship between the stabilities of the complexes and the Gutmann donicity of the solvents. In nitrobenzene solution, some evidence for the formation of a 2:1 sandwich adduct between the smaller crowns (i.e., B15C5 and 18-crowns) are observed from the molar conductance-mole ratio data which is supported by the1H NMR data.  相似文献   

6.
1H NMR spectroscopy was used to investigate the stoichiometry and stability of the drug ketamine cation complexes with some crown ethers, such as 15-crown-5 (15C5), aza-15-crown-5 (A15C5), 18-crown-6 (18C6), aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6), dibenzyl-diaza-18-crown-6 (DBzDA18C6) and cryptant [2,2,2] (C222) in acetonitrile (AN), dimethylsulfoxide (DMSO) and methanol (MeOH) at 27 degrees C. In order to evaluate the formation constants of the ketamine cation complexes, the CH3 protons chemical shift (on the nitrogen atom of ketamine) was measured as function of ligand/ketamine mole ratio. The formation constant of resulting complexes were calculated by the computer fitting of chemical shift versus mole ratio data to appropriate equations. A significant chemical shift variation was not observed for 15C5 and 18C6. The stoichiometry of the mono aza and diaza ligands are 1:1 and 1:2 (ligand/ketamine), respectively. In all of the solvents studied, DA18C6 formed more stable complexes than other ligands. The solvent effect on the stability of these complexes is discussed.  相似文献   

7.
23Na NMR measurements were employed to monitor the stability of Na+ ion complexes with 18-crown-6 (18C6), dicycloxyl-18-crown-6 (DC18C6), dibenzo-18-crown-6 (DB18C6), 15-crown-5 (15C5) and benzo-15-crown-5 (B15C5) in binary acetonitrile–dimethylformamide mixtures of varying composition. In all cases, the variation of 23Na chemical shift with [crown]/[Na+] mole ratios indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation which relates the observed chemical shifts to the formation constants. It was found that, in pure acetonitrile, the stabilities of the resulting 1:1 complexes vary in the order 15C5>DC18C6>B15C5>18C6>DB18C6, while in pure dimethylformamide the stability order is DC18C6>18C6>15C5>B15C5>DB18C6. The observed changes in the stability order could be related to the specific interactions between some crown ethers and acetonitrile. It was found that, in the case of all complexes, an increase in the percentage of dimethylformamide in the solvent mixtures would significantly decrease the stability of the complexes.  相似文献   

8.
A conductance study of the interaction between ammonium ion and 18‐Crown‐6 (18C6), dicyclohexano‐18‐crown‐6 (DC18C6), ditertbutyl‐dicyclohexano‐18‐crown‐6 (t‐bu)2DC18C6, diaza‐15‐crown‐5 (DA15C5), dibenzo‐21‐crown‐7 (DB21C7) and N‐Phenylaza‐15‐crown‐5 (NPA15C5) in acetonitril‐di‐methylsulfoxide mixture was carried out at various temperatures. The formation constants of the resultant 1:1 complexes were determined from the molar conductance‐mole ratio data and found to vary in the order of DA15C5 > DC18C6 > 18C6 > (t‐bu)2DC18C6 > DB21C7 > NPA15C5. The enthalpy and entropy of the complexation reactions were determined from the temperature dependence of the formation constants.  相似文献   

9.
Lithium-7 NMR measurements were used to investigate the stoichiometry and stability of Li+ complexes with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), dibenzo-15-crown-5 (DB15C5) and 12-crown-4 (12C4) in a number of nitromethane (NM)-acetonitrile (AN) binary mixtures. In all cases, the exchange between the free and complexed lithium ion was fast on the NMR time scale and a single population average resonance was observed. While all crown ethers form 1:1 complexes with Li+ ion in the binary mixtures used, both 1:1 and 2:1 (sandwich) complexes were observed between lithium ion and 12C4 in pure nitromethane solution. Stepwise formation constants of the 1:1 and 2:1 (ligand/metal) complexes were evaluated from computer fitting of the NMR-mole ratio data to equations which relate the observed metal ion chemical shifts to formation constants. There is an inverse linear relationship between the logarithms of the stability constants and the mole fraction of acetonitrile in the solvent mixtures. The stability order of the 1:1 complexes was found to be 15C5·Li+>B15C5·Li+>DB15C5·Li+>12C4·Li+. The optimized structures of the free ligands and their 1:1 and 2:1 complexes with Li+ ion were predicted by ab initio theoretical calculations using the Gaussian 98 software, and the results are discussed.  相似文献   

10.
Formation of the charge transfer complexes between benzo-15-crown-5, dibenzo-18-crown-6, dibenzo-24-crown-8 and dibenzo-crown-10 and the π-acceptors DDQ and TCNE in dichloromethane solution was investigated spectrophotometrically. The molar absorptivities and formation constants of the resulting 1:1 molecular complexes were determined. The stabilities of the complexes of both π-acceptors vary in the order DB18C6 > DB3OC10 ⋍ DB24C8 > B15C5. All of the resulting complexes were isolated in crystalline form and characterized. The influences of potassium ion on the formation and stability of the TCNE molecular complexes were studied. Effects of the crown ether structure and the role of the K+ ion on the formation of charge transfer complexes are discussed.  相似文献   

11.
A spectrophotometric study was conducted on solutions of benzo-15-crown-5, dibenzo-18-crown-6 and dibenzo-24-crown-8 with the -acceptors, DDQ, and CHL in dichloromethane at room temperature. The stabilities of the resulting charge transfer complexes with the -acceptors DDQ were found to decrease in the order DB18C6>DB15C5>DB24C8 and with CHL it follows the order DB18C6>DB24C8. The addition of either NaCl or KCl affects the values of formation constants (Kc) and the order of stabilities of the charge transfer complexes. The formation constants in the absence and presence of NaCl and KCl salts were calculated and discussed.  相似文献   

12.
Thallium-205 and carbon-13 NMR measurements were used to determine, in nonaqueous solvents, the stabilities of thallium(I) complexes with macrocyclic ligands of different structures but very nearly the same cavity sizes. In a given solvent the complexing abilities of the ligand vary in the order DA18C6 > 18C6 > DC18C6 > DB18C6 > DT18C6. In all cases the stabilities of the complexes varied inversely with the Gutmann donicities of the solvents.  相似文献   

13.
The complexation reaction of phenylaza-15-crown-5, and 4-nitrobenzo-15-crown-5, benzo-15-crown-5 and dibenzopyrdino-18-crwon-6, dibenzo-18-crown-6,dicyclohexyl-18-crown-6(cis and trans), and 18-crown-6 with Na+ ion in methanol have been studied by potentiometric method. The Na+ ion-selective electrode has been used both as indicator and reference electrode. The stoichiometry and stability constants of complexes of these crown ethers with sodium ion were evaluated by MINIQUAD program. The major trend of stability of resulting complexes of these macrocycle with Na+ ion varied in the order DCY18C6 > DB18C6 > 18C6 > DBPY18C6 > phenylaza-15C5 > benzo-15C5 > 4-nitrobenzo-15C5. The obtained results in particular stability constant of complexes of DBPY18C6, phenylaza-15C5 and 4-nitrobenzo-15C5 with sodium ion in comparison with other crowns ether are novel, and interesting.  相似文献   

14.
A conductance study of the interaction between Rb+ and Cs+ ions and18-crown-6 (18C6), dicyclohexyl-18-crown-6 (DC18C6), dibenzo-18-crown-6 (DB18C6),dibenzo-24-crown-8 (DB24C8), and dibenzo-30-crown-10 (DB30C10) inacetonitrile solution has been carried out at various temperatures. The formationconstants of the resulting 1:1 complexes were determined from the molarconductance-mole ratio data and found to vary in the orderDC18C6 > 18C6 > DB30C10 > DB18C6 DB24C8for Rb+ ion andDC18C6 > 18C6 > DB30C10 DB24C8 > DB18C6for Cs+ ion. The enthalpy and entropy of complexation were determined fromthe temperature dependence of the formation constants. The complexes with the18-crowns are both enthalpy and entropy stabilized while, in the case of largecrown ethers, the corresponding complexes are enthalpy stabilized but entropydestabilized.  相似文献   

15.
The complexation of some alkali and alkaline earth cations with18-crown-6(18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexyl-18-crown-6 (DCY18C6), and dibenzopyridino-18-crown-6 (DBPY18C6) in a methanol solution has been studied by a competitive potentiometric titration using Ag+/Ag electrode as a probe. The stoichiometry and stability constants of the resulting complexes have been evaluated by the MINIQUAD program. The stoichiometry for all resulting complexes was 1:1. The order of stability of Ag+ complexes with desired crown ethers varied as DBPY18C6 > DCY18C6 > 18C6 > DB18C6.The stability of the resulting complexes for each of these crown ethers varies in the order ofK+ > Na+ and Ba2+ > Sr2+ > Ca2+ > Mg2+.For each of the used metal ions the major sequence of the stability constants of the resulting complexes varies as DCY18C6 > 18C6 > DB18C6 > DBPY18C6 with minor exceptions.  相似文献   

16.
In order to quantitatively investigate effects of the size, the structuralrigidity, and the lipophilicity of dibenzo-18-crown-6 (DB18C6) on itsextraction-ability and -selectivity for alkali metal ions, constants of theoverall extraction (Kex), the distribution for various diluents of lowdielectric constants (KD,MLA), and the aqueous ion-pairformation (KMLA) of DB18C6-alkali metal (Na-—Cs) picrate 1:1:1 complexes were determined at 25°C; the partition constants of DB18C6 itself were also measured at 25°C. The log KMLA of Na, K, Rb, and Cs are -0.14 ± 0.11, 1.30 ± 0.10, 1.00 ± 0.09, and 0.24 ± 0.11, respectively. The partition behavior of DB18C6 and its1:1:1 complexes with the alkali metal picrates can be clearly explained byregular solution theory, except for chloroform. The molar volumes andsolubility parameters of DB18C6 and the 1:1:1 complexes were determined.A relation between molar volumes of the complexes and KMLAis discussed. The magnitude of Kex is largely determined by that ofKD,MLA. For every diluent, the extraction selectivity of DB18C6increases in the order Na > Cs > Rb > K. The K extraction-selectivity of DB18C6 over Na is the highest among all the combinations of the two neighboring alkali metals in the periodic table. The extraction-ability and -selectivity for the alkalimetal picrates and their change with the diluent of DB18C6 were completely elucidated by the four fundamental equilibria and regular solution theory.  相似文献   

17.
The synergistic extraction of cobalt(II) from aqueous solutions loaded with cesium chloride or nitrate, with mixtures of 1-phenyl-3-methyl-4-acyl-pyrazol-5-ols (HL) [acyl = benzoyl (HPMBP), para-tert.-butyl-benzoyl (HPMB'P), stearoyl (HPMSP)] and crown ethers E = B15C5, 18C6, DC18C6, DB18C6 and DB24C8 (DC = dicyclohexano, B = benzo, DB = dibenzo), in CHCl(3), CH(2)Cl(2) and ClCH(2)CH(2)Cl, has been studied. The experimental data agree with the extracted species E(2)CsCoL(3) (E = B15C5), ECsCoL(3), (E = DB18C6) and CoL(2)E (E = DB24C8). The extraction yields follow the orders: 18C6 DC18C6 > DB18C6 > B15C5 > DB24C8, HPMBP > HPMB'P > HPMSP, and ClCH(2)CH(2)Cl > CH(2)Cl(2) > CHCl(3). In spite of the better complexation of potassium than cesium with "18C6" type crown ethers, the extraction of ECsCo (PMBP)(3) is generally higher than the EKCo(PMBP)(3) one. Except in the case of DB24C8, loading the aqueous phase with Cs(+), K(+), Sr(2+) or Ba(2+) improves the synergistic extraction of cobalt.  相似文献   

18.
The complexation reactions between Tl+ ion and dibenzo-30-crown-10 (DB30C10), dibenzo-24-crown-8 (DB24C8), dibenzo-21-crown-7 (DB21C7), and aza-18-crown-6 (A18C6) were studied in different dimethylformamide-acetonitrile mixtures at various temperatures. The formation constants of the resulting 1 : 1 complexes were determined from the molar conductance-mole ratio data and found to vary in the order A18C6 > DB30C10 > DB21C7 > DB24C8. The enthalpy and entropy of complexation were determined from the temperature dependence of the formation constants.  相似文献   

19.
Cesium-133 nuclear magnetic resonance spectroscopy was used as a sensitive probe to investigate the stoichiometry and stability of Cs+ ion complexes with aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6) and dibenzylediaza-18-crown-6 (DBzDA18C6) in different binary acetonitrile?Cnitromethane mixtures. In all cases, the exchange between free and complexed cesium ion was fast on the NMR time scale and only a single population average resonance was observed. The 133Cs chemical shift?Cmole ratio data indicated that the cesium ion forms 1:1 cation?Cligand complexes with the investigated aza-crowns in all acetonitrile?Cnitromethane mixtures. The formation constants of the resulting complexes were evaluated from computer fitting of the chemical shift?Cmole ratio data. The stability of the resulting 1:1 complexes with Cs+ were found to vary in the order A18C6 > DBzDA18C6 > DA18C6. In all cases, there is the inverse relationship between the complex stability constants and the amount of acetonitrile in the mixed solvent.  相似文献   

20.
Rouhollahi A  Shamsipur M  Amini MK 《Talanta》1994,41(9):1465-1469
The complex formation of Hg(2+) with some macrocyclic crown ethers in nitrobenzene, acetonitrile and dimethylformamide solutions was studied by differential pulse polarography at 25 degrees C. The stoichiometry and stability of the complexes were determined by monitoring the shift in the Hg(2+) differential pulse peak potential against the ligand concentration. The stability of the resulting 1:1 complexes vary in the order dicyclohexyl-18-crown-6 > 18-crown-6 > 15-crown-5 > dibenzo-18-crown-6 > dibenzo-24-crown-8 > benzo-15-crown-5 > 12-crown-4. There is an inverse relationship between the complex stability and the Gutmann donor number of solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号