首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrode membranes were presented which contained only PVC and a plasticizer. The plasticizers studied were tris(2-ethylhexyl)phosphate, 2-nitrophenyl octyl ether and bis(1-butylpentyl)adipate. The response and selectivity of these ligand-free PVC electrodes towards alkali and alkaline earth cations are reported.  相似文献   

2.
The plasticized poly(vinyl chloride) (PVC‐P) and its blend with cellulose (PVC‐P/cell) were prepared by means of extrusion. The samples were then biodegraded in forest soil as well as in soil enriched with cellulolytic microorganisms. Moreover, the samples were vaccinated with chosen species of fungi whose direct effect on polymer was then observed. The course of biodegradation was monitored in terms of, and by means of the following: weight loss, carbon dioxide evolved, attenuated total reflectance infrared (FTIR‐ATR) spectroscopy, gel permeation chromatography (GPC), as well as visual and microscopic observation (OM, SEM). The mechanical properties of samples were studied using the standard tensile tests. It was found that biodegradation in soil occurs in PVC‐P and this process is accelerated in the composition of PVC‐P with cellulose. The biodecomposition yield of PVC‐P/cellulose blends (calculated as relative percentage weight loss) is several dozen times higher than that of PVC‐P. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 903–919, 2007  相似文献   

3.
Ryba O  Petranék J 《Talanta》1976,23(2):158-159
A miniature version of the potassium ion-selective electrode with valinomycin or dimethyldibenzo-30-crown-10 in a poly(vinyl chloride) matrix is described. Electrodes having an effective membrane area of <0.2 mm(2) exhibit Nernstian behaviour within a range of activities of the potassium ion of 10(-1)-10(-5)M, a rapid response and good long-term potential stability.  相似文献   

4.
Summary A series of semi-interpenetrating polymer networks (semi-IPN) of polyurethane (PU) and poly(vinyl chloride) (PVC) has been obtained by prepolymer method and characterised by FTIR; morphological features were examined by SEM-EDS. It has been found that PVC spherical aggregates are dispersed in the PU matrix, but Cl atoms location indicates partial miscibility of both polymers at the interphase which is probably due to hydrogen bonding and/or dipole-dipole interactions. The PVC component influences the phase behaviour of PUs hard segments, as evidenced by DSC results. Thermogravimetric analysis (TG) reveals a complex, multi-step decomposition process with the main mass loss at 503-693 K, while the DTG maxima are located between 540 and 602 K.  相似文献   

5.
A.c. impedance measurements are used to calculate relative mobilities for ionic species in PVC-matrix neutral-carrier ion-selective electrode membrane. It is deduced that the membrane must include anionic sites to achieve Nernstian response, and that the selectivity of the membrane occurs as a result of a high equilibrium concentration of the primary ion within the membrane, relative to the concentration of interfering ions.  相似文献   

6.
7.
Ohki A  Kim JS  Suzuki Y  Hayashita T  Maeda S 《Talanta》1997,44(6):1131-1135
Lipophilic acyclic dibenzopolyether diamides, 12 kinds, have been designed to prepare solvent polymeric membrane ion-selective electrodes (ISEs) for Pb(2+). The ionophores include 1,5-bis[2-(N,N-dialkylcarbamoylmethoxy)phenoxy]-3-oxapentanes1-4, 1,5-bis[2-(N,N-dialkylcarbamoylpentadecyloxy)phenoxy]-3-oxapentanes 5-8, and 1,2-bis[2-(2'-N,N-dialkylcarbamoylpentadecyloxy)phenoxy]ethanes 9-12. Linear response concentration range of the ISE based on 9 is 3 x 10(-2) - 1 x 10(-6) M of Pb(2+) (average slope = 28.5 mV decade(-1)). Potentiometric selectivities of the ISEs based on 1-12 for Pb(2+) over other heavy metal cations, alkali metal cations, and alkaline earth metal cations have been assessed. These ISEs exhibit remarkably high selectivities for Pb(2+) relative to heavy metal cations, such as Cu(2+), Fe(2+), and Ni(2+), the selectivity coefficients (K(Pot)(Pb,Cu)) being 5 x 10(-5) - 6 x 10(-5) for 1-4 and ca. 6 x 10(-4) for 9. For the Pb(2+) selectivities over alkali metal cations, such as Na(+) and K(+), 9 which has an ethylene glycol spacer and a N,N-diethyl group is superior to other dibenzopolyether diamide ionophores 1-8 and 10-12.  相似文献   

8.
New sulfur-containing copolymers based on poly(vinyl chloride) have been prepared by the nucleophilic substitution of chlorine atoms by sulfur atoms using sodium tetra- and pentasulfides. It has been shown that these copolymers can be carbonized to produce sulfur-containing carbon materials with residual chlorine content about 2 wt %.  相似文献   

9.
Retardation of discoloration of poly(vinyl chloride) with diimide was studied in dimethylformamide at 130°C. with the use of p-toluenesulfonylhydrazide (PSH) as a source of diimide. A process was proposed that involved prolonging the induction periods of discoloration by inhibiting the development of conjugated polyene structure. The optimum proportion of PSH was one fourth of the poly(vinyl chloride), the best results. Furthermore, poly(vinyl chloride) discolored by thermal degradation in o-dichlorobenzene or gamma-ray irradiation under vacuum was decolorized in solution at 130°C. by addition of PSH. The decolorized poly(vinyl chloride) thus obtained was thermally stable compared with that obtained by oxidative methods.  相似文献   

10.
The degradation of the binary polymer blends, poly(vinyl acetate)/poly(vinyl chloride), poly(vinyl acetate)/poly(vinylidene chloride) and poly(vinyl acetate)/polychloroprene has been studied by using thermal volatilization analysis, thermogravimetry, evolved gas analysis for hydrogen chloride and acetic acid, and spectroscopic methods. For the first two systems named, strong interaction occurs in the degrading blend, but the polychloroprene blends showed no indication of interaction. In the PVA/PVC and PVA/PVDC blends, hydrogen chloride from the chlorinated polymer causes substantial acceleration in the deacetylation of PVA. Acetic acid from PVA destabilizes PVC but has little effect in the case of PVDC because of the widely differing degradation temperatures of PVA and PVDC. The presence of hydrogen chloride during the degradation of PVA results in the formation of longer conjugated sequences, and the regression in sequence length at high extents of deacetylation found for PVA degraded alone is not observed.  相似文献   

11.
To obtain poly(vinyl chloride) (PVC) of excellent toughness, a new method of crosslinking PVC is proposed in which PVC is crosslinked with the soft segment in an elastomer such as liquid Thiokol. The reaction can be accomplished by immersing PVC–Thiokol blends in liquid ammonia at 20–30°C. A similar reaction occurs in aqueous ammonia when hexamethylphosphoramide is used as an activator. Characteristics of the crosslinked PVC thus obtained and of the controls of a similar uncrosslinked composition (PVC–Thiokol LP-8, 100:5 by weight) were as follows: tensile strength, 7.3 and 4.8 kg/mm2; elongation at break, 30 and 2.5%; Young's modulus, 3.5 × 104 and 2.9 × 104 kg/cm2; tensile impact, 88 and 15 kg-cm/cm3, respectively. The crosslinked PVC as plasticized with dioctyl phthalate (DOP) and the control blend (PVC–Thiokol LP-8–DOP, 100:10:10 by weight), respectively, showed tensile strengths of 5.9 and 4.8 kg/mm2, elongations at break of 44 and 24%, Young's moduli of 2.5 × 104 and 1.6 × 104 kg/cm2, and tensile impact strengths of 62 and 120 kg-cm/cm3. As the crosslinkage through the soft segments increases up to about 5%, the elongation at break, Young's modulus, and tensile impact, in addition to the tensile strength, are improved. This is different from the results so far observed with the crosslinked amorphous polymers and is characteristic of the products of crosslinking through the soft segment. The experimental results are discussed in this paper.  相似文献   

12.
Phosphate selective electrodes have been produced based upon rubbery membranes containing heterocylic macrocycles as sensors covalently bound to a cross-linked polystyrene-block–polybutadiene-blockpolystyrene (SBS) polymer. The membranes were robust and the best HPO42−-selective membrane fabricated was composed of 7.1% (m/m) dicumyl peroxide, 28.3% (m/m) 2-nitrophenyloctylether, 9.8% (m/m) 3-(10-undecenyl)-1,5,8-triazacyclodecane-2,4-dione, 31.0% (m/m) SBS and 23.8% (m/m) PoleStar™ 200R (clay-based filler). The characteristics of this electrode were a linear Nernstian range of 3.9×10−3 to 1×10−6 mol dm−3 HPO42− with a limit of detection of 1.0×10−6 mol dm−3 HPO42−, a slope of −29.7±0.9 mV per activity decade and a pH range from 6 to 8. Selectivity coefficients for phosphate against various interfering anions (chloride, sulfate and nitrate) were determined. Response times were 2 min or under, stability of response and electrode lifetime in continuous use were also very satisfactory. The response behavior of HPO42−-ISEs based upon mobile and bound ionophores was comparable and suggests that mobility of the ionophore is not necessary to obtain a working ISE and that covalent binding of ionophores can be used to produce ISEs of increased stability and robustness.  相似文献   

13.
The reactions of poly(vinyl chloride) and butyllithium in tetrahydrofuran were investigated. A deep purple color developed at first with addition of butyllithium to the THF–PVC solution, and a spontaneous color change of the misture occurred successively to blue, green, and finally pale vellow. In these reaction stages, the PVC might be butylated, dehydrochlorinated, and partially lithiated by BuLi. These facts were substantiated by the results of successive reactions with various substances such as Michler's ketone, carbon dioxide, and styrene.  相似文献   

14.
The reaction of elemental sulfur with poly(vinyl chloride) is studied in 1,2,4-trichlorobenzene and without any solvent under various conditions. Black polymers containing 3.77–57.64% chemically bonded sulfur and, according to IR spectroscopy, including >C=C< and >C=S groups in macromolecules are obtained. It is shown that the diffraction curves of poly(vinyl chloride) and of the reaction product containing 7.82% almost coincide but that the thermal stability of the latter is considerably higher than that of the initial polymer. The prospects of the practical use of the products of the reaction of poly(vinyl chloride) with elemental sulfur are demonstrated.  相似文献   

15.
A pyrolysis–gas chromatography–mass spectrometric technique has been developed to study the thermal degradation of poly(vinyl chlorides) polymerized at different temperatures. Hydrogen chloride and benzene evolution during successive stages of pyrolysis have been quantitatively determined and correlated to the tacticity and molecular weight of the polymer. It was found that lowering the temperature of polymerization and molecular weight depresses benzene evolution and increases char weight but does not affect the HCl yield. It is suggested that the syndiotactic trans microstructure favored at low temperature of polymerization yields polyenes which cannot cyclize to form benzene. As the molecular weight decreases, the increase in number of vinyl chain ends facilitates pyrolytic crosslinking and char formation.  相似文献   

16.
The photo-oxidation of PVC has been studied over the temperature range 30–150°C. Initiation with ultraviolet (2537A) radiation has been correlated with the presence of minute amounts of ozone. The contribution of atomic oxygen and singlet oxygen (1Δg) molecules to the initiation mechanism is discussed. The β-chloroketones probably formed in the photo-oxidation of PVC, decomposed according to a Norrish type I reaction without loss of chlorine atoms. The gaseous products of the photo-oxidation of PVC at 30°C were carbon dioxide, carbon monoxide, hydrogen, and methane. Hydrogen chloride was obtained only when PVC was heated at high temperatures. When PVC was photo-oxidized and then heated at high temperature, benzene was obtained in addition to hydrogen chloride. The gaseous products from the photo-oxidations of model compounds, such as 4-chloro-2-butanone and 2,4-dichloropentane, were also compared with those from PVC. Hydrogen chloride was detected only after photo-oxidation at temperatures of 25°C or higher. Therefore, it was concluded that hydrogen chloride is mainly a product of thermal decomposition. Since unsaturation was not observed in photo-oxidized PVC films, the cause of discoloration is unclear. When PVC was modified by stabilizers or additives, the oxidative degradation was further complicated by side reactions with the additives.  相似文献   

17.
18.
《Polymer Photochemistry》1981,1(3):221-232
Hydrogen chloride is evolved at an increasing rate in the light-induced oxidation of poly(vinyl chloride) films. These accelerated kinetics were shown to result from an increased absorption of light by the polyenes formed, since the quantum yield of dehydrochlorination (ΦHCl = 0·015) is independent of the extent of the reaction in the dose range investigated. Determination of the quantum yields of the different processes involved indicate that, for each scission of the polymer backbone, 11 molecules of hydrogen chloride are evolved while three carbonyl groups, two hydroperoxides and 0·4 intermolecular crosslinks appear on the polymer chain. A mechanism that involves β-scissions of the tertiary alkoxy radicals, resulting from non-terminating interactions of α-chloro-peroxy radicals, is suggested to explain the observed increase of the polymer degradation in the presence of oxygen.  相似文献   

19.
Allyl free-radical intermediates are detected by ultraviolet absorption at 255 mu in poly(vinyl chloride) irradiated at ?196°C and stored at 25°C. In vacuum at 25°C, allyl radicals are converted into polyenyl free radicals and polyenes. From the nature of allyl radical decay in vacuum, radical chain transfer between polyenyl radicals and poly(vinyl chloride) is inferred. Allyl and polyenyl free radicals are scavenged by oxygen on post-irradiation storage in air.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号