首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(3):739-747
Most commercially available fluorous polymers are ill suited for the fabrication of ion‐selective electrode (ISE) membranes. Therefore, we synthesized semifluorinated polymers for this purpose. Ionophore‐free ion‐exchanger electrodes made with these polymers show a selectivity range (≈14 orders of magnitude) that is nearly as wide as found previously for liquid fluorous ion‐exchanger electrodes. These polymers were also used to construct ISE membranes doped with fluorophilic silver ionophores. While the resulting ISEs were somewhat less selective than their fluorous counterparts, the semifluorinated polymers offer the advantage that they can be doped both with fluorophilic ionophores and traditional lipophilic ionophores, such as the silver ionophore Cu(II)‐I (o ‐xylylenebis[N,N ‐diisobutyldithiocarbamate]). We also cross‐linked these polymers, producing very durable membranes that retained broad selectivity ranges. K+ ISEs made with the cross‐linked semifluorinated polymer and the ionophore valinomycin showed selectivities similar to those of PVC membrane ISEs but with a superior thermal stability, the majority of the electrodes still giving a theoretical (Nernstian) response after exposure to a boiling aqueous solution for 10 h.  相似文献   

2.
A novel polyacrylate-based matrix for potentiometric ion-selective electrodes has been developed. Isododecyl acrylate, acrylonitrile and hexanedioldiacrylate co-monomers along with the thermo-initiator 2,2-dimethoxy-2-phenylacetophenone were used as polymeric matrix components. A lead(II)-selective electrode (Pb-ISE) was constructed using the above matrix. The electrode showed comparable analytical performance in the micromolar range to Pb-ISEs with conventional poly(vinyl chloride)-based membranes containing neutral ionophore and with solid-state membranes containing a mixture of lead sulphide and silver sulphide. Electrochemical impedance spectroscopy studies revealed much lower ion mobility in the polyacrylate membrane than in plasticized poly(vinyl chloride) membranes. This result additionally indicates the possibility of obtaining a lower detection limit for ISEs using the new acrylate matrix.  相似文献   

3.
Peper S  Gonczy C  Runde W 《Talanta》2005,67(4):713-717
A new strategy for improving the robustness of membrane-based ion-selective electrodes (ISEs) is introduced based on the incorporation of microsphere-immobilized ionophores into plasticized polymer membranes. As a model system, a Cs+-selective electrode was developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate (TFPB) as the ion exchanger. Electrodes were evaluated with respect to Cs+ in terms of sensitivity, selectivity, and dynamic response. ISEs containing P-EG and TFPB that were plasticized with 2-nitrophenyl octyl ether (NPOE) yielded a linear range from 10−1 to 10−5 M Cs+, a slope of 55.4 mV/decade, and a lower detection limit (log aCs) of −5.3. In addition, these membranes also demonstrated superior selectivity over Li+, Na+, and alkaline earth metal ion interferents when compared to analogous membranes plasticized with bis(2-ethylhexyl) sebacate (DOS) or membranes containing a lipophilic, mobile ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) as ionophore.  相似文献   

4.
A recently introduced model describing the response curves of polymer membrane ion-selective electrodes (ISEs) is used here to optimize a Cd2+-ISE with a view to achieve very low detection limits. In a first step, the selectivity behavior is determined for two membranes based on the ionophore, N,N,N′,N′-tetradodecyl-3,6-dioxaoctanedithioamide (ETH 5435), but having different concentrations of the ionophore and ion-exchanger. Based on these data, the optimal response curves are calculated with a model that takes into account the ion fluxes induced by interfering ions. The experimental results with different ionic backgrounds correspond very well with the predicted effects. The best lower detection limit of 10−10 M or 11 ppt Cd2+ is achieved at pH 7 with an ionic background of 10−4 M NaNO3.  相似文献   

5.
The effect of a lipophilic ionic additive, a tetradecylammonium salt of a liquid ion exchanger, on the selectivity of ion-selective electrodes (ISEs) for cations of nitrogen-containing organic bases was studied. Additive-containing ISEs exhibited a higher selectivity for cations of primary to tertiary amines as compared to that for quaternary ammonium cations. A maximum change in selectivity (up to more than two orders of magnitude) due to the introduction of tetradecylammonium was observed for membranes containing dinonyladipate as a plasticizer and tris(nonyloxy)benzene sulfonic acid as an ion exchanger. In this case, the introduction of lipophilic ionic additive may lead to the reversal of the selectivity series. The effect of the lipophilic ionic additive on the selectivity of ISEs with membranes plasticized with o-nitrophenyl octyl ether decreased approximately by an order of magnitude. The selectivity of ISEs with the membranes containing tetrakis(4-chlorophenyl) borate as a cation exchanger was virtually independent of the presence of lipophilic ionic additives. The results obtained were explained by the peculiarities of ion-pair formation in the membrane.  相似文献   

6.
To date, poly(vinyl chloride) (PVC) is the most used polymer in the design of ion selective electrode (ISE) membranes. This paper is focused on the use of sulfonated poly(ether ether ketone) (SPEEK) as an alternative material to PVC for the design of ISEs. SPEEK of the desired degree of sulfonation is synthesized from poly(ether ether ketone) (PEEK). An NH4+-ISE has been chosen as a model electrode to study the efficiency of SPEEK as polymer matrix of the membrane. The material was evaluated in ionophore free ion exchanger membranes as well as in ion-selective electrodes membranes containing nonactine as ionophore. Analytical performance parameters of the prepared electrodes were evaluated. The electrodes show a slope between 50 and 60 mV dec−1 depending on both the calibration medium and the membrane composition. A linear range of response between 10−4 and 1.0 M and a lifetime of 1-2 months were obtained. The interferences of cations such us Ca2+, Na+, Li+ and K+ over the prepared ISEs are studied as well. Although the plasticizer in the SPEEK based membrane matrix is not necessary, its presence improves the sensibility. This makes SPEEK a good potential choice over alternative membrane matrices reported in the literature and a promising platform for the establishment of membrane components.  相似文献   

7.
《Electroanalysis》2005,17(22):2019-2025
Since conventional response models for ionophore‐based ISEs are based on the assumption of a homogeneous membrane phase, they cannot accurately predict the response of membranes containing self‐aggregating ionophores. However, meaningful conclusions about the relationship between ionophore structure and potentiometric responses can only be drawn if ionophore aggregation is properly recognized. This study demonstrates that dark field visible microscopy and FTIR microspectroscopy are valuable tools for the observation of such ionophore self‐aggregation and, thereby, the development of new ionophore‐based ISEs. Sulfate selective electrodes with solvent polymeric membranes containing bisthiourea ionophores that differ only by peripheral nonpolar substituents were shown to exhibit very different interferences from the sample pH. On one hand, optimized electrodes based on an ionophore with a phenyl substituent on each thiourea group ( 1 ) do not respond to pH at all and function well as sulfate‐selective electrodes. On the other hand, membranes containing a more lipophilic ionophore with two additional hexyl‐substituted adamantyl groups ( 2 ) exhibit severe pH interference at pH values as low as pH 5. The observation of membranes containing ionophore 2 with dark field visible microscopy and FTIR microspectroscopy shows supramolecular aggregation, and explains the startling difference between the potentiometric responses of the two types of electrodes.  相似文献   

8.
Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd(2+) was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd(2+). The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg(-1)) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4±0.6 mV decade(-1) of activity for Cd(2+) ions and a working concentration range of 1.6×10(-6)-1.0×10(-2)M. The sensor has a fast response time of 10s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd(2+) from the oxidation of CdS QDs solution and the real treatment waste water sample with excellent results.  相似文献   

9.
We report the synthesis and analytical application of the first Cu2+‐selective synthetic ion channel based on peptide‐modified gold nanopores. A Cu2+‐binding peptide motif (Gly‐Gly‐His) along with two additional functional thiol derivatives inferring cation‐permselectivity and hydrophobicity was self‐assembled on the surface of gold nanoporous membranes comprising of about 5 nm diameter pores. These membranes were used to construct ion‐selective electrodes (ISEs) with extraordinary Cu2+ selectivities, approaching six orders of magnitude over certain ions. Since all constituents are immobilized to a supporting nanoporous membrane, their leaching, that is a ubiquitous problem of conventional ionophore‐based ISEs was effectively suppressed.  相似文献   

10.
Manganese(III) complexes of three fluorophilic salen derivatives were used to prepare ion-selective electrodes (ISEs) with ionophore-doped fluorous sensing membranes. Because of their extremely low polarity and polarizability, fluorous media are not only chemically very inert but also solvate potentially interfering ions poorly, resulting in a much improved discrimination of such ions. Indeed, the new ISEs exhibited selectivities for CO(3)(2-) that exceed those of previously reported ISEs based on nonfluorous membranes by several orders of magnitude. In particular, the interference from chloride and salicylate was reduced by 2 and 6 orders of magnitude, respectively. To achieve this, the selectivities of these ISEs were fine-tuned by addition of noncoordinating hydrophobic ions (i.e., ionic sites) into the sensing membranes. Stability constants of the anion-ionophore complexes were determined from the dependence of the potentiometric selectivities on the charge sign of the ionic sites and the molar ratio of ionic sites and the ionophore. For this purpose, a previously introduced fluorophilic tetraphenylborate and a novel fluorophilic cation with a bis(triphenylphosphoranylidene)ammonium group, (R(f6)(CH(2))(3))(3)PN(+)P(R(f6)(CH(2))(3))(3), were utilized (where R(f6) is C(6)F(13)). The optimum CO(3)(2-) selectivities were found for sensing membranes composed of anionic sites and ionophore in a 1:4 molar ratio, which results in the formation of 2:1 complexes with CO(3)(2-) with stability constants up to 4.1 × 10(15). As predicted by established theory, the site-to-ionophore ratios that provide optimum potentiometric selectivity depend on the stoichiometries of the complexes of both the primary and the interfering ions. However, the ionophores used in this study give examples of charges and stoichiometries previously neither explicitly predicted by theory nor shown by experiment. The exceptional selectivity of fluorous membranes doped with these carbonate ionophores suggests their use not only for potentiometric sensing but also for other types of sensors, such as the selective separation of carbonate from other anions and the sequestration of carbon dioxide.  相似文献   

11.
The selectivity and sensitivity of ion-selective electrodes (ISEs) based on membranes with phosphoryl-containing ionophores and lipophilic anion exchangers were studied. The analytical properties of the ISEs can be significantly modified and their selectivity for alkali and alkaline-earth metals can be even reversed by changing the membrane composition.  相似文献   

12.
Metallo-salens of cobalt(II) (Co-Sal), chromium(III) (Cr-Sal), and aluminum(III) (Al-Sal) are used as the active ionophores within plasticized poly(vinyl chloride) membranes. It is shown that central metal-ion plays a critical role in directing the ionophore selectivity. Polymer-membrane electrodes based on Co-Sal, Cr-Sal, and Al-Sal are demonstrated to exhibit enhanced responses and selectivity toward nitrite/thiocyanate, thiocyanate, and fluoride anions, respectively. The improved anion selectivity of the three ionophore systems is shown to deviate significantly from the classical Hofmeister pattern that is based only on ion lipophilicity. For example, optimized membrane electrodes for nitrite ion based on Co-Sal exhibit logK(Nitrite,Anion)(pot) values of -5.22, -4.66, -4.48, -2.5 towards bromide, perchlorate, nitrate, and iodide anions, respectively. Optimized membrane electrodes based on Co-Sal and Cr-Sal show near-Nernstian responses towards nitrite (-57.9+/-0.9 mV/decade) and thiocyanate (-56.9+/-0.8 mV/decade), respectively, with fast response and recovery times. In contrast, Al-Sal based membrane electrodes respond to fluoride ion in a super-Nernstian (-70+/-3 mV/decade) and nearly an irreversible mode. The operative response mechanism of Co-Sal, Cr-Sal, and Al-Sal membrane electrodes is examined using the effect of added ionic sites on the potentiometric response characteristics. It is demonstrated that addition of lipophilic anionic sites to membrane electrodes based on the utilized metallo-salens enhances the selectivity towards the primary ion, while addition of cationic sites resulted in Hofmeister selectivity patterns suggesting that the operative response mechanism is of the charged carrier type. Electron spin resonance (ESR) data indicates that Co(II) metal-ion center of Co-Sal ionophore undergoes oxidation to Co(III). This process leads to formation of a charged anion-carrier that is consistent with the response behavior obtained for Co-Sal based membrane electrodes.  相似文献   

13.
《Electroanalysis》2003,15(20):1598-1605
It is well known that non‐ionic surfactants (NIS) influence remarkably the potentiometric measurements with liquid membrane ion selective electrodes (ISEs), interfering particularly on performance of ISEs for earth‐alkali metals, for which the loss of selectivity with regard to alkali metals has been documented. These studies indicate that such interferences are due to the extraction of surfactants within the membrane, where a competition takes place between the originally present ionophore and the surfactant which also acts as a ligand for alkali metals. The interpretation of such phenomena enabled one to exploit this interference for analytical purposes by membrane/solution extraction experiment monitored by UV measurements and by impedance FRA analysis on coated wire electrodes. Using Ca/Mg ISEs based on the neutral ionophore ETH 4030, it has been established that the logarithm of the Ca/Mg over Na potentiometric selectivity constant is linearly correlated with the concentration of NIS like Tegopren 5863 and Triton X‐100. The proposed method has been applied for the development of a new potentiometric analytical procedure for the determination of Tegopren 5863 in synthetic seawater (SSW), ranging from 0.25 to 5 ppm. Our procedure consists in the exposure of the electrode to stirred SSW containing the surfactant; the progressive extraction of Tegopren 5863 causes a growth in electrode's sensitivity to Na+ and K+, losing selectivity for Ca2+ and Mg2+. In turn this induces an increase of EMF, as all these ions are present in the studied matrix. The potential drift was monitored for 15 hours, showing that the process reaches thermodynamic equilibrium after about 12 hours of exposure. This method presents a value of 210 ppb of Tegopren 5863 as detection limit.  相似文献   

14.
Upreti P  Metzger LE  Bühlmann P 《Talanta》2004,63(1):139-148
While there is a considerable interest in the food industry in determining various analytes using ion-selective electrodes (ISEs), only few reports describe their use for direct measurements in food. In this study, the suitability of glass electrodes and ionophore-based solvent polymeric ISEs for the determination of pH in Process cheese, Cheddar cheese and milk was investigated. The liquid junction potential between a 3 M KCl bridge electrolyte and diluted as well as undiluted Process cheese was found to be negligible. Reference electrodes with ceramic plug and sleeve-type junctions performed well, although precautions needed to be taken to prevent plugging at the junctions. While the protein rennet casein posed no problems in pH measurements, the extraction of neutral lipophilic compounds or hydrophobic peptides into solvent polymeric membranes was evident, resulting in some loss of selectivity for monovalent cations upon exposure to cheese. However, it was found that ISEs based on tridodecylamine (R3N) as ionophore and o-nitrophenyl octyl ether (oNPOE) as plasticizer can be used to accurately measure the pH of milk and, after desensitization of the electrodes in a cheese emulsion, of diluted Process cheese. Since pH measurements with a glass electrode showed that emulsions of cheese moderately diluted to a cheese content of 70% have the same pH as undiluted cheeses, it is possible to determine the pH in cheese with ionophore-based ISEs. R3N membranes also performed well in undiluted milk.  相似文献   

15.
Nowadays there exists a large variety of ion sensors based on polymeric or solid-state membranes that can be used in a sensor array format in many analytical applications. This review aims at providing a critical overview of the distinct approaches that were developed to build and use potentiometric sensor arrays based on different transduction principles, such as classical ion-selective electrodes (ISEs) with polymer or solid-state membranes, solid-contact electrodes (SCE) including coated wire electrodes (CWE), ion-sensitive field-effect transistors (ISFETs) and light addressable potentiometric sensors (LAPS). Analysing latest publications on potentiometric sensor arrays development and applications certain problems are outlined and trends are discussed.  相似文献   

16.
Ion-selective electrodes (ISEs) based on pi-coordinating carriers were prepared and investigated as potentiometric sensors for aromatic cations, using N-methylpyridinium as a model aromatic cation. Derivatives of tetraphenylborate were studied as charged carriers in plasticized poly(vinyl chloride) membranes. Furthermore, neutral compounds containing pi-coordinating anthryl groups were studied as neutral carriers. Bis(2-ethylhexyl)sebacate (DOS) and 2-nitrophenyl octyl ether (o-NPOE) were used as non-polar and polar plasticizer, respectively. ISEs were constructed by using poly(3,4-ethylenedioxythiophene) (PEDOT) as solid-contact material. Conventional ISEs with internal filling solution were used for comparison. The potentiometric responses of the ISEs were investigated using N-methylpyridinium as primary ion. The results show that the selectivity of the ISEs is influenced significantly by both the plasticizer and the charged carriers, while the neutral carriers studied have only a minor influence on the selectivity. The role of cation-pi interactions between aromatic cations and the membrane components is discussed.  相似文献   

17.
Until now both ion‐to‐electron transducers as well as large surface area nanostructured conducting materials were successfully used as solid contacts for polymer‐based ion‐selective electrodes. We were interested to explore the combination of these two approaches by fabricating ordered electrically conducting polymer (ECP) nanostructures using 3D nanosphere lithography and electrosynthesis to provide a high surface area and capacitive interface for solid contact ion‐selective electrodes (SC‐ISEs). For these studies we used poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT(PSS)) films with 750 nm diameter interconnected pores as the intermediate layer between a glassy carbon electrode and a Ag+ ‐selective polymeric membrane. We also investigated the feasibility of loading the voids created in the polymer film with a lipophilic redox mediator (1,1’‐dimethylferrocene) to provide the respective ISEs with well‐defined/controllable E0 values. These expectations were fulfilled as the standard deviation of E0 values were reduced with almost an order of magnitude for 3D nanostructured SC‐ISEs filled with the redox mediator as compared to their redox mediator‐free analogs. The detrimental effect of the redox mediator extraction into the plasticized PVC‐based ion‐selective membrane (ISM) was efficiently suppressed by replacing the PVC‐based ISMs with a low diffusivity silicone rubber matrix.  相似文献   

18.
It is a problem to be solved that the experimental selectivity coefficients of ion selective electrodes( ISEs) depend on the activity. This paper studied the new method of determining selectivity coefficients. A mixed ion response equation, which was similar to Nicolsky-Eisenman (N-E) equation recommended by IUPAC, was proposed. The equation includes the practical response slope of ISEs to the primary ion and the interfering ion. The selectivity coefficient was defined by the equation instead of the N-E equation. The experimental part of the method is similar to that based on the N-E equation. The values of selectivity coefficients obtained with this method do not depend on the activity whether the electrodes exhibit the Nernst response or non-Nernst response. The feasibility of the new method is illustrated experimentally.  相似文献   

19.
The main characteristics of liquid-membrane ion-selective electrodes (ISEs) based on high-molecular quaternary ammonium salts (QASs) were studied. The electrodes are reversible to the ethylenediaminetetraacetatobismuthate(III) anion. It was found that the selectivity of the ISEs to the potential-determining ion depends on the symmetry of the QAS. A mechanism of the ISE membrane response was proposed.  相似文献   

20.
Badr IH  Feiler J  Bachas LG 《Talanta》2005,65(1):261-266
Two different polysaccharides with anticoagulant activities, heparin and chondroitin sulfate, were used to modify the surface of sodium-selective electrodes based on asymmetric cellulose triacetate (CTA) membranes. The membranes were formulated with sodium ionophore X, anionic additive, and o-nitrophenyl octyl ether. The response behavior of the surface-modified sodium electrodes was compared with that of control CTA, as well as poly(vinyl chloride) (PVC)-based sodium-selective electrodes. It was found that the selectivity coefficients obtained with the surface modified CTA membrane electrodes were slightly higher than those of the control, but in the case of heparin-modified electrodes they still met the requirements for analysis of sodium in physiological fluids within an error of <1%; the corresponding error for chondroitin sulfate-modified electrodes was also <1% except for the case of potassium ion in which the error was 1.3%. Likewise, it was found that other response characteristics, such as detection limit, linear range, slope of the response plot, selectivity pattern, and response time were comparable in both the control and the polysaccharide-modified electrodes. Therefore, the surface modification does not significantly alter the response behavior of the sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号