首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Berger SA 《Talanta》1982,29(8):718-720
Benzil mono(2-quinolyl)hydrazone, BmQH, has been studied as an extracting agent for Cu(II), Ni(II) and Co(II). Though the uncomplexed ligand remains undissociated in the pH range 3.5-10, it can lose a proton on complexation with metals, owing to the electron-withdrawing effects of neighbouring groups. The dependence of degree of extraction on pH indicates that complexes of both Cu(2+) and Cu(OH)(+) are extracted. Cu(BmQH)(2) and Cu(OH)BmQH species are extracted into MIBK, and the Cu(OH)BmQH complex is extracted into benzene. In the vicinity of pH 5.5-6, extraction efficiencies greater than 95% can be achieved with both solvents. Both Ni(II) and Co(II) also show dependence of extraction on pH, but precipitation of both metals in the vicinity of pH 6 limits further studies.  相似文献   

2.
The geometrical and electronic structures of different isomers of Ni(2)O(2)H(2)(+) are investigated by multireference configuration interaction (MRCI) calculations using natural atomic orbital basis sets. The lowest-lying isomer, Ni(2)(OH)(2)(+), has a rhombic shape with two OH groups bridging the Ni atoms. The next isomer in energetic order with a relative energy of 0.29 eV consists of a linear NiONi(OH(2))(+) chain. Other structures with a rhombic shape, (NiH)(2)O(2)(+), with H bound to the Ni atoms have considerably higher energies, above 4 eV. Especially the low-lying isomers are characterised by a large number of low-lying electronic terms. The product Ni(2)O(2)H(2)(+) of the reaction of Ni(2)O(2)(+) with small alkanes is likely to have the rhombic Ni(2)(OH)(2)(+) structure. The reaction energy of the reaction Ni(2)O(2)(+) + H(2)→ Ni(2)(OH)(2)(+) is estimated to be about -3.5 eV.  相似文献   

3.
The stable salts, SbCl(4)(+)Sb(OTeF(5))(6)(-) and SbBr(4)(+)Sb(OTeF(5))(6)(-), have been prepared by oxidation of Sb(OTeF(5))(3) with Cl(2) and Br(2), respectively. The SbBr(4)(+) cation is reported for the first time and is only the second example of a tetrahalostibonium(V) cation. The SbCl(4)(+) cation had been previously characterized as the Sb(2)F(11)(-), Sb(2)Cl(2)F(9)(-), and Sb(2)Cl(0.5)F(10.5)(-) salts. Both Sb(OTeF(5))(6)(-) salts have been characterized in the solid state by low-temperature Raman spectroscopy and X-ray crystallography. Owing to the weakly coordinating nature of the Sb(OTeF(5))(6)(-) anion, both salts are readily soluble in SO(2)ClF and have been characterized in solution by (121)Sb, (123)Sb, and (19)F NMR spectroscopy. The tetrahedral environments around the Sb atoms of the cations result in low electric field gradients at the quadrupolar (121)Sb and (123)Sb nuclei and correspondingly long relaxation times, allowing the first solution NMR characterization of a tetrahalocation of the heavy pnicogens. The following crystal structures are reported: SbCl(4)(+)Sb(OTeF(5))(6)(-), trigonal system, space group P&thremacr;, a = 10.022(1) ?, c = 18.995(4) ?, V = 1652.3(6) ?(3), D(calc) = 3.652 g cm(-)(3), Z = 2, R(1) = 0.0461; SbBr(4)(+)Sb(OTeF(5))(6)(-), trigonal system, space group P&thremacr;, a = 10.206(1) ?, c = 19.297(3) ?, V = 1740.9(5) ?(3), D(calc) = 3.806 g cm(-)(3), Z = 2, R(1) = 0.0425. The crystal structures of both Sb(OTeF(5))(6)(-) salts are similar and reveal considerably weaker interactions between anion and cation than in previously known SbCl(4)(+) salts. Both cations are undistorted tetrahedra with bond lengths of 2.221(3) ? for SbCl(4)(+) and 2.385(2) ? for SbBr(4)(+). The Raman spectra are consistent with undistorted SbX(4)(+) tetrahedra and have been assigned under T(d)() point symmetry. Trends within groups 15 and 17 are noted among the general valence force constants of the PI(4)(+), AsF(4)(+), AsBr(4)(+), AsI(4)(+), SbCl(4)(+) and SbBr(4)(+) cations, which have been calculated for the first time, and the previously determined force constants for NF(4)(+), NCl(4)(+), PF(4)(+), PCl(4)(+), PBr(4)(+), and AsCl(4)(+), which have been recalculated for the P and As cations in the present study. The SbCl(4)(+) salt is stable in SO(2)ClF solution, whereas the SbBr(4)(+) salt decomposes slowly in SO(2)ClF at room temperature and rapidly in the presence of Br(-) ion and in CH(3)CN solution at low temperatures. The major products of the decompositions are SbBr(2)(+)Sb(OTeF(5))(6)(-), as an adduct with CH(3)CN in CH(3)CN solvent, and Br(2).  相似文献   

4.
Zhang  Yu  Liu  Ling-Zhi  Peng  Yun-Dong  Li  Na  Dong  Wen-Kui 《Transition Metal Chemistry》2019,44(7):627-639
Transition Metal Chemistry - Two trinuclear Ni(II) and Cu(II) coordination compounds [{Ni(L1)(C2H5OH)}2(μ-OAc)2Ni]·2C2H5OH (1) and [{Cu(L2)(CH3OH)}2(μ-OAc)2Cu]·2CH3OH (2)...  相似文献   

5.
Gao EQ  Tang JK  Liao DZ  Jiang ZH  Yan SP  Wang GL 《Inorganic chemistry》2001,40(13):3134-3140
Four oxamato-bridged heterotrinuclear Ni(II)Cu(II)Ni(II) complexes of formula ([Ni(bispictn)](2)Cu(pba))(ClO(4))(2).2.5H(2)O (1), ([Ni(bispictn)](2)Cu(pbaOH))(ClO(4))(2).H(2)O (2), ([Ni(cth)](2)Cu(pba))(ClO(4))(2) (3), and ([Ni(cth)](2)Cu(opba))(ClO(4))(2).H(2)O (4) and a binuclear Ni(II)Cu(II) complex of formula [Cu(opba)Ni(cth)].CH(3)OH (5) have been synthesized and characterized by means of elemental analysis, IR, ESR, and electronic spectra, where pba = 1,3-propylenebis(oxamato), pbaOH = 2-hydroxyl-1,3-propylenebis(oxamato), opba = o-phenylenebis(oxamato), bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine, and cth = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The crystal structures of 1, 3, and 5 have been determined. The structures of complexes 1 and 3 consist of trinuclear cations and perchlorate anions, and that of 5 consists of neutral binuclear molecules which are connected by hydrogen bonds and pi-pi interactions to produce a unique supramolecular "double" sheet. In the three complexes, the copper atom in a square-planar or axially elongated octahedral environment and the nickel atom in a distorted octahedral environment are bridged by the oxamato groups, with Cu.Ni separations between 5.29 and 5.33 A. The magnetic properties of all five complexes have been investigated. The chi(M)T versus T plots for 1-4 exhibit the minimum characteristic of antiferromagnetically coupled NiCuNi species with an irregular spin state structure and a spin-quartet ground state. The chi(M)T versus T plot for 5 is typical of an antiferromagnetically coupled NiCu pair with a spin-doublet ground state. The Ni(II)-Cu(II) isotropic interaction parameters for the five complexes were evaluated and are between 102 and 108 cm(-)(1) (H = -JS(Cu).S(Ni)).  相似文献   

6.
The capillary electrophoretic separation was accomplished for Fe(II) and Ni(II) precomplexed with 1,10-phenanthroline (phen) in 2 M n-butyric acid/ n-butyrate buffer at pH 4.5 with direct UV detection at 260 nm. The applied voltage was 5 kV. The high concentration buffer of the n-butyrate resulted in a similar separation mechanism to that of ion-pair reversed-phase high-performance liquid chromatography. The separation would be due to the hydrophobic interaction between the ionic associates, [Fe(phen)(3)]( n-butyrate)(+) and [Ni(phen)(3)]( n-butyrate)(+), with the n-butyrate ion and n-butyric acid as background electrolyte. Linear calibration ranges were obtained for Fe(II) and Ni(II) from 100 to 500 ng ml(-1). The relative standard deviations ( n=10) for 3 g mL(-1) Fe(II) and Ni(II) were 0.090 and 0.086, respectively. Detection limits ( S/ N=3) for Fe(II) and Ni(II) were 20 ng mL(-1). The method was applied to the determination of nickel in aluminium and duralumin alloys.  相似文献   

7.
The following monopositive actinyl ions were produced by electrospray ionization of aqueous solutions of An(VI)O(2)(ClO(4))(2) (An = U, Np, Pu): U(V)O(2)(+), Np(V)O(2)(+), Pu(V)O(2)(+), U(VI)O(2)(OH)(+), and Pu(VI)O(2)(OH)(+); abundances of the actinyl ions reflect the relative stabilities of the An(VI) and An(V) oxidation states. Gas-phase reactions with water in an ion trap revealed that water addition terminates at AnO(2)(+)·(H(2)O)(4) (An = U, Np, Pu) and AnO(2)(OH)(+)·(H(2)O)(3) (An = U, Pu), each with four equatorial ligands. These terminal hydrates evidently correspond to the maximum inner-sphere water coordination in the gas phase, as substantiated by density functional theory (DFT) computations of the hydrate structures and energetics. Measured hydration rates for the AnO(2)(OH)(+) were substantially faster than for the AnO(2)(+), reflecting additional vibrational degrees of freedom in the hydroxide ions for stabilization of hot adducts. Dioxygen addition resulted in UO(2)(+)(O(2))(H(2)O)(n) (n = 2, 3), whereas O(2) addition was not observed for NpO(2)(+) or PuO(2)(+) hydrates. DFT suggests that two-electron three-centered bonds form between UO(2)(+) and O(2), but not between NpO(2)(+) and O(2). As formation of the UO(2)(+)-O(2) bonds formally corresponds to the oxidation of U(V) to U(VI), the absence of this bonding with NpO(2)(+) can be considered a manifestation of the lower relative stability of Np(VI).  相似文献   

8.
Ni(II) and Cu(II) complexes having the general composition [M(L)(2)X(2)] [where L=2-pyridinecarboxaldehyde thiosemicarbazone, M=Ni(II) and Cu(II), X=Cl(-), NO(3)(-) and 1/2 SO(4)(2-)] have been synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, EPR and electronic spectral studies. The magnetic moment measurements of the complexes indicate that all the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) complexes whereas tetragonal geometry for Cu(II) except [Cu(L)(2)SO(4)] which posseses five coordinated geometry. The ligand and its metal complexes were screened against phytopathogenic fungi and bacteria in vitro.  相似文献   

9.
Complexes of a N,N-bis(2-picolyl)amine (bpa) derivative with a pendant ethoxyethanol side chain (bpa(CH2)2O(CH2)2OH) (1) with late divalent transition metal ions Co(II), Ni(II), Cu(II) and Zn(II) have been studied. All complexes, [[bpa(CH2)2O(CH2)2OH]Co(NO3)](NO3) (1Co), [[bpa(CH2)2O(CH2)2OH]Ni(NO3)](NO3) (1Ni), [[bpa(CH2)2O(CH2)2OH]Cu(H2O)(NO3)](NO3) (1Cu) and [[bpa(CH2)2O(CH2)2OH]Zn(NO3)](NO3) (1Zn), were comprehensively characterized and their X-ray single crystal structures have been determined. The complexes show hexacoordinated geometries, in which 1 acts as a tetradentate (1Cu) or pentadentate (1Co, 1Ni and 1Zn) ligand. DNA cleavage experiments have been performed on supercoiled double stranded DNA plasmids in order to compare the cleavage efficiency of all four metals in the same ligand environment of 1. In this assay, 1Co and 1Cu showed the highest cleavage efficiency, whereas 1Ni and 1Zn were virtually inactive. Quantification of the gel electrophoresis bands showed that more than 80% of the plasmid has suffered at least one single strand cut in the case of 1Cu, and about 50% of the plasmid was nicked by 1Co. The differential cleavage activity is discussed in relation to the structural findings and a mechanism is proposed for 1Cu.  相似文献   

10.
Two heterotrinuclear complexes, [Mn(II)(Ni(II)L)2].2CH3OH (where H3L = 1,1,1-tris(N-salicylideneaminomethyl)ethane) and [Fe(III)(Ni(II)L)2]NO3.C2H5OH, consisting of three face-sharing octahedra have been prepared; although these complexes have closely related structures and have the same 1-5/2-1 spin system, they show completely different magnetic interactions between the adjacent metal ions: ferromagnetic (Ni(II)-Mn(II)) and antiferromagnetic (Ni(II)-Fe(III)).  相似文献   

11.
Li TT  Cen MC 《Talanta》1969,16(4):544-550
The complexes of uranium(VI) and lead(II) with 1-glutamine were investigated polarographically. For uranium(VI), the complexes UO(2)G(+2), UO(2)G(2)(+2) and UO(2)(OH)Ga(2)(+) were identified at pH < 2.5, pH 2.5-4.1 and pH 4.1-5.2 respectively. With lead(II), complexes PbG(+2), Pb(OH)G(+) and Pb(OH)G(2)(+) were formed at pH 2.0-5.0, pH 5.0-7.0, and pH 7.0-8.5, respectively. The concentration dissociation constant of Pb(OH)G(2)(+) was found to be pK(c) = 10.16 +/- 0.04 at ionic strength 0.6.  相似文献   

12.
Two new heterometallic Ni(II)(n)Cu(II)((9-n)) complexes [n = 1 (2) and 2 (3)] have been synthesized following a multicomponent self-assembly process from a n:(3 - n):2:6 stoichiometric mixture of Ni(2+), Cu(2+), L(6-), and [CuL'](2+), where L and L' are the bridging and blocking ligands 1,3,5-benzenetris(oxamate) and N,N,N',N',N'-pentamethyldiethylenetriamine, respectively. Complexes 2 and 3 possess a unique cyclindrical architecture formed by three oxamato-bridged trinuclear linear units connected through two 1,3,5-substituted benzenetris(amidate) bridges, giving a triangular metallacyclophane core. They behave as a ferromagnetically coupled trimer of two (2)/one (3) S = (1)/(2) Cu(II)(3) plus one (2)/two (3) S = 0 Ni(II)Cu(II)(2) linear units with overall S = 1 Ni(II)Cu(II)(8) (2) and S = (1)/(2) Ni(II)(2)Cu(II)(7) (3) ground states.  相似文献   

13.
The syntheses and structural details of tetraisopropoxyaluminates and tetra-tert-butoxyaluminates of nickel(II), copper(I), and copper(II) are reported. Within the nickel series, either Ni[Al(OiPr)4]2.2HOiPr, with nickel(II) in a distorted octahedral oxygen environment, or Ni[Al(OiPr)4]2.py, with nickel(II) in a square-pyramidal O4N coordination sphere, or Ni[(iPrO)(tBuO)3Al]2, with Ni(II) in a quasi-tetrahedral oxygen coordination, has been obtained. Another isolated complex is Ni[(iPrO)3AlOAl(OiPr)3].3py (with nickel(II) being sixfold-coordinated), which may also be described as a "NiO" species trapped by two Al(OiPr)3 Lewis acid-base systems stabilized at nickel by three pyridine donors. Copper(I) compounds have been isolated in three forms: [(iPrO)4Al]Cu.2py, [(tBuO)4Al]Cu.2py, and Cu2[(tBuO)4Al]2. In all of these compounds, the aluminate moiety behaves as a bidentate unit, creating a tetrahedrally distorted N2O2 copper environment in the pyridine adducts. In the base-free copper(I) tert-butoxyaluminate, a dicopper dumbbell [Cu-Cu 2.687(1) A] is present with two oxygen contacts on each of the copper atoms. Copper(II) alkoxyaluminates have been characterized either as Cu[(tBuO)4Al]2, {Cu(iPrO)[(iPrO)4Al]}2, and Cu[(tBuO)3(iPrO)Al]2 (copper being tetracoordinated by oxygen) or as [(iPrO)4Al]2Cu.py (pentacoordinated copper similar to the nickel derivative). Finally, a copper(II) hydroxyaluminate has been isolated, displaying pentacoordinate copper (O4N coordination sphere) by dimerization, with the formula {[(tBuO)4Al]Cu(OH).py}2. The formation of all of these isolated products is not always straightforward because some of these compounds in solution are subject to decomposition or are involved in equilibria. Besides NMR [copper(I) compounds], UV absorptions and magnetic moments are used to characterize the compounds.  相似文献   

14.
Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.  相似文献   

15.
The CCl(3)(+) and CBr(3)(+) cations have been synthesized by oxidation of a halide ligand of CCl(4) and CBr(4) at -78 degrees C in SO(2)ClF solvent by use of [XeOTeF(5)][Sb(OTeF(5))(6)]. The CBr(3)(+) cation reacts further with BrOTeF(5) to give CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(2). The [XeOTeF(5)][Sb(OTeF(5))(6)] salt was also found to react with BrOTeF(5) in SO(2)ClF solvent at -78 degrees C to give the Br(OTeF(5))(2)(+) cation. The CCl(3)(+), CBr(3)(+), CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(OTeF(5))(2)(+) cations and C(OTeF(5))(4) have been characterized in SO(2)ClF solution by (13)C and/or (19)F NMR spectroscopy at -78 degrees C. The X-ray crystal structures of the CCl(3)(+), CBr(3)(+), and C(OTeF(5))(3)(+) cations have been determined in [CCl(3)][Sb(OTeF(5))(6)], [CBr(3)][Sb(OTeF(5))(6)].SO(2)ClF, and [C(OTeF(5))(3)][Sb(OTeF(5))(6)].3SO(2)ClF at -173 degrees C. The CCl(3)(+) and CBr(3)(+) salts were stable at room temperature, whereas the CBr(n)(OTeF(5))(3-n)(+) salts were stable at 0 degrees C for several hours. The cations were found to be trigonal planar about carbon, with the CCl(3)(+) and CBr(3)(+) cations showing no significant interactions between their carbon atoms and the fluorine atoms of the Sb(OTeF(5))(6)(-) anions. In contrast, the C(OTeF(5))(3)(+) cation interacts with an oxygen of each of two SO(2)ClF molecules by coordination along the three-fold axis of the cation. The solid-state Raman spectra of the Sb(OTeF(5))(6)(-) salts of CCl(3)(+) and CBr(3)(+) have been obtained and assigned with the aid of electronic structure calculations. The CCl(3)(+) cation displays a well-resolved (35)Cl/(37)Cl isotopic pattern for the symmetric CCl(3) stretch. The energy-minimized geometries, natural charges, and natural bond orders of the CCl(3)(+), CBr(3)(+), CI(3)(+), and C(OTeF(5))(3)(+) cations and of the presently unknown CF(3)(+) cation have been calculated using HF and MP2 methods have been compared with those of the isoelectronic BX(3) molecules (X = F, Cl, Br, I, and OTeF(5)). The (13)C and (11)B chemical shifts for CX(3)(+) (X = Cl, Br, I) and BX(3) (X = F, Cl, Br, I) were calculated by the GIAO method, and their trends were assessed in terms of paramagnetic contributions and spin-orbit coupling.  相似文献   

16.
合成了-N(2-羟基乙基)水杨醛亚胺合钴(Ⅱ)、镍(Ⅱ)、铜(Ⅱ)和锌(Ⅱ)并为元素分析和红外光谱数据所表征。其中三种螯合物为新的席地夫碱金属配合物。用体外美兰法对Co(Ⅱ)、Ni(Ⅱ)和Cu(Ⅱ)配合物进行了抗癌活性试验。结果表明,这些螯合物对六种人体肿瘤具有抑瘤活性。  相似文献   

17.
《Polyhedron》1987,6(7):1517-1521
Formation constants of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with 3-hydroxy-2-naphthalene carboxylic acid have been determined potentiometrically in a 50% (v/v) dioxane—water solution at 25°C and 0.2 M KNO3. Experimental data are analysed using several computer programs. The obtained values for the log of the formation constant of the first 1 : 1 (metal : ligand) complex with the different metals are: Co 7.9, Ni 7.1, Cu 10.44, Zn 7.8 and Cd 7.3. The log of the formation constant for the 1 : 2 copper complex is 18.20. It is to be noted that Ni(II) yields a 1 : 1 complex weaker than expected from the Irving—Williams series.  相似文献   

18.
Yoshino T  Murakami S  Kagawa M 《Talanta》1974,21(3):199-209
Potentiometric and spectrophotometric studies on Semi-Methylthymol Blue (SMTB or H(4)L) have been performed. The acid-base and Co(II), Ni(II), Cu(II) and Zn(II)-ligand reaction stoichiometries were determined, and the formation constants of the corresponding proton and metal complexes, and the molar absorptivities were calculated. Evidence was found for the formation of 1:1 Co(II), Ni(II) and Cu(II) complexes, and 1:1 and 1:2 Zn(II) complexes. Cu(II) formed the hydroxo-complex, Cu(OH)L(3-), but no hydroxo-complexes of the other metal ions were observed. Suggestions are made concerning the probable structure of the complexes.  相似文献   

19.
Reactions between 2,6-diformyl-4-methylphenol (DFMF) and tris(hydroxymethyl) aminomethane (THMAM = H(3)L2) in the presence of copper(II) salts, CuX(2) (X = CH(3)CO(2)(-), BF(4)(-), ClO(4)(-), Cl(-), NO(3)(-)) and Ni(CH(3)CO(2))(2) or Ni(ClO(4))(2)/NaC(6)H(5)CO(2), sodium azide (NaN(3)), and triethylamine (TEA), in one pot self-assemble giving a coordination polymer consisting of repeating pentanuclear copper(II) clusters {[Cu(2)(H(5)L(2-))(μ-N(3))](2)[Cu(N(3))(4)]·2CH(3)OH}(n) (1) and hexanuclear Ni(II) complexes [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(CH(3)CO(2))(2)]·6C(3)H(7)NO·C(2)H(5)OH (2) and [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(C(6)H(5)CO(2))(2)]·3C(3)H(7)NO·3H(2)O·CH(3)OH (3). In 1, H(5)L(2-) and in 2 and 3 H(3)L1(-) and HL2(2-) represent doubly deprotonated, singly deprotonated, and doubly deprotonated Schiff-base ligands H(7)L and H(4)L1 and a tripodal ligand H(3)L2, respectively. 1 has a novel double-stranded ladder-like structure in which [Cu(N(3))(4)](2-) anions link single chains comprised of dinuclear cationic subunits [Cu(2)(H(5)L(2-))(μ-N(3))](+), forming a 3D structure of interconnected ladders through H bonding. Nickel(II) clusters 2 and 3 have very similar neutral hexanuclear cores in which six nickel(II) ions are bonded to two H(4)L1, two H(3)L2, four μ-azido, and two μ-CH(3)CO(2)(-)/μ-C(6)H(5)CO(2)(-) ligands. In each structure two terminal dinickel (Ni(2)) units are connected to the central dinickel unit through four doubly bridging end-on (EO) μ-azido and four triply bridging μ(3)-methoxy bridges organizing into hexanuclear units. In each terminal dinuclear unit two nickel centers are bridged through one μ-phenolate oxygen from H(3)L1(-), one μ(3)-methoxy oxygen from HL2(2-), and one μ-CH(3)CO(2)(-) (2)/μ-C(6)H(5)CO(2)(-) (3) ion. Bulk magnetization measurements on 1 show moderately strong antiferromagnetic coupling within the [Cu(2)] building block (J(1) = -113.5 cm(-1)). Bulk magnetization measurements on 2 and 3 demonstrate that the magnetic interactions are completely dominated by ferromagnetic coupling occurring between Ni(II) ions for all bridges with coupling constants (J(1), J(2), and J(3)) ranging from 2.10 to 14.56 cm(-1) (in the ? = -J(1)(?(1)?(2)) - J(1)(?(2)?(3)) - J(2)(?(3)?(4)) - J(1)(?(4)?(5)) - J(1)(?(5)?(6)) - J(2)(?(1)?(6)) - J(3)(?(2)?(6)) - J(3)(?(2)?(5)) - J(3)(?(3)?(5)) convention).  相似文献   

20.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号