首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes the application of indolylphosphine ligands with a diphenylphosphino moiety to the palladium-catalyzed borylation of aryl chlorides. The combination of palladium metal precursor with PPh(2)-Andole-phos, which comprises an inexpensive -PPh(2) group, provides highly effective catalysts for the borylation of aryl chlorides. A range of functional groups such as -CN, -NO(2), -CHO, -COMe, -COOMe, and -CF(3) was compatible, and the catalyst loading down to 0.025 mol % of Pd can be achieved. The Pd/PPh(2)-Andole-phos system is able to catalyze both borylation reaction and Suzuki-Miyaura coupling reaction in a one-pot sequential manner for the direct synthesis of biaryl compounds in excellent yields.  相似文献   

2.
A noncryogenic protocol for the synthesis of 2-substituted 3-thienylboronic acids and esters as well as 3-substituted 2-thienylboronic acids and esters has been developed. Electrophiles were introduced regiospecifically in the 2-position of 2,3-dibromothiophene and in the 3-position of 2-bromo-3-iodothiophene by halogen-magnesium exchange followed by quenching with electrophiles. Palladium-catalyzed borylation of the 2,3-substituted halothiophenes with pinacolborane and P(t-Bu)3 as ligand for Pd produced 9 and 10. The borylation protocol was tolerated by a range of functional groups; however, strongly electron-withdrawing substituents decreased the stability of the thienylboronic acids and esters.  相似文献   

3.
“Masked” areneboronic acids have been prepared by Ir-catalyzed C-H borylation of arenes. A [Ir(OMe)(cod)]2 complex with a DPPE ligand showed the highest catalytic activity in the C-H borylation of benzene at 80 °C. The reaction system can be applied to substituted arenes, including halogen-substituted arenes. 1,3-Dihalobenzenes undergo the C-H borylation at their 5-positions in a regioselective fashion, affording 3,5-dihaloareneboronic acid derivatives, which serve as useful coupling modules for the convergent dendrimer synthesis.  相似文献   

4.
An iridium-catalyzed C-H borylation provides the key step in a short synthesis of two indolequinone natural products. This regioselective C-H functionalization strategy delivers 7-borylindoles that undergo facile oxidation-hydrolysis to 7-hydroxyindoles and subsequent oxidation to the desired indolequinones, thereby demonstrating a powerful application of the iridium-catalyzed C-H borylation reaction. A significant result has arisen from the iridium-catalyzed borylation of N-diethylhydrosilyl-6-methoxyindole; even in the presence of a substituent at C6, the N-hydrosilyl group still directs borylation exclusively into the more sterically hindered C7 position in preference to C2.  相似文献   

5.
Mechanochemistry has been applied for the first time to an iridium(I)-catalyzed C−H borylation reaction. By using either none or just a catalytic amount of a liquid, the mechanochemical C−H borylation of a series of heteroaromatic compounds proceeded in air to afford the corresponding arylboronates in good-to-excellent yields. A one-pot mechanochemical C−H borylation/Suzuki–Miyaura cross-coupling sequence for the direct synthesis of 2-aryl indole derivatives is also described. The present study constitutes an important milestone towards the development of industrially attractive solvent-free C−H bond functionalization processes in air.  相似文献   

6.
A sterically demanding amine, 1,2,2,6,6‐pentamethylpiperidine (PMP), forms a highly reactive Lewis acid–base pair with boron trifluoride. This pair reacts with terminal acetylenes to give the products of C(sp)?H borylation, previously unknown tri‐ and tetraalkynylboron compounds. Trialkynylfluoroborates can serve as surrogates of alkynyltrifluoroborates for C?C coupling reactions. Using aqueous NaOH, PMP can be recovered from its tetrafluoroborate salt, which is formed as a C?H borylation byproduct. Combining the discovered borylation reactivity with the PMP recovery provides a straightforward and atom‐efficient approach to synthetically useful alkynylfluoroborates.  相似文献   

7.
We observed a surprisingly high electronically driven regioselectivity for the iridium-catalyzed C−H borylation of donor-π-acceptor (D -π-A) systems with diphenylamino ( 1 ) or carbazolyl ( 2 ) moieties as the donor, bis(2,6-bis(trifluoromethyl)phenyl)boryl ( B(FXyl)2 ) as the acceptor, and 1,4-phenylene as the π-bridge. Under our conditions, borylation was observed only at the sterically least encumbered para-positions of the acceptor group. As boronate esters are versatile building blocks for organic synthesis (C−C coupling, functional group transformations) the C−H borylation represents a simple potential method for post-functionalization by which electronic or other properties of D -π-A systems can be fine-tuned for specific applications. The photophysical and electrochemical properties of the borylated ( 1-(Bpin)2 ) and unborylated ( 1 ) diphenylamino-substituted D -π-A systems were investigated. Interestingly, the borylated derivative exhibits coordination of THF to the boronate ester moieties, influencing the photophysical properties and exemplifying the non-innocence of boronate esters.  相似文献   

8.
Spectacular progress has recently been achieved in transition metal-catalyzed C?H borylation of phosphines as well as directed electrophilic C?H borylation. As shown here, P-directed electrophilic borylation provides a new, straightforward, and efficient access to phosphine–boranes. It operates under metal-free conditions and leverages simple, readily available substrates. It is applicable to a broad range of backbones (naphthyl, biphenyl, N-phenylpyrrole, binaphthyl, benzyl, naphthylmethyl) and gives facile access to various substitution patterns at boron (by varying the boron electrophile or post-derivatizing the borane moiety). NMR monitoring supports the involvement of P-stabilized borenium cations as key intermediates. DFT calculations reveal the existence and stabilizing effect of π-arene/boron interactions in the (biphenyl)(i-Pr)2P→BBr2+ species.  相似文献   

9.
We report the regiospecific, ruthenium-catalyzed borylation of saturated terminal C-H bonds. Alkylboronates were obtained in 78-98% yields. The borylations of alkanes, trialkylamines, protected alcohols, and fluoroalkanes occurred regiospecifically at the methyl group that is least sterically hindered. In contrast to most organometallic C-H activation, the reactions of alkanes occurred in higher yields than the reactions of arenes. Reactions were conducted that probed steric and electronic effects on the alkyl borylation. These reactions showed that the borylation occurred preferentially at the methyl group that is least sterically hindered and most electron-deficient. Ruthenium compounds containing boryl ligands were synthesized, and one was characterized by X-ray crystallography. One of these compounds contained a rare bridging boryl ligand and served as a catalyst precursor for the borylation of octane.  相似文献   

10.
The borylation of arenes leads to the formation of synthetically versatile products from unactivated arene reagents. We report that Ir(I) precursors in conjunction with bipyridine ligands catalyze in high yields the borylation of arenes under mild conditions. These reactions encompase arenes bearing both electron-withdrawing and electron-donating substituents. The temperatures required for the transformation are much lower than those previously reported for direct arene borylation. The combination of [Ir(COE)2Cl]2 and (4,4-di-t-butyl)bipyridine even allows for reaction at room temperature. The same catalyst system at 100 degrees C provides remarkably high turnover numbers for a hydrocarbon functionalization process. Mechanistic studies show that the reactions involve uncommon, Ir(II) tris-boryl complexes. An example of this type of complex ligated by di-t-butylbipyridine was isolated and structurally characterized. It reacted rapidly at room temperature to produce aryl boronate esters in high yields.  相似文献   

11.
Enantioselective functionalization of racemic alkyl halides is an efficient strategy to assemble complex chiral molecules, but remains one of the biggest challenges in organic chemistry. The distant and selective activation of unreactive C−H bonds in alkyl halides has received growing interest as it enables rapid generation of molecular complexity from simple building blocks. Here, we reported a cobalt-catalyzed remote borylation of alkyl (pseudo)halides (alkyl−X, X=I, Br, Cl, OTs) with pinacolborane (HBpin) and presented a robust approach for the generation of valuable chiral secondary organoboronates from racemic alkyl halides. This migration borylation reaction is compatible with primary, secondary, and tertiary bromides, offering direct access to a broad range of alkylboronates. The extension of this catalytic system to the borylation of aryl halides was also demonstrated. Preliminary mechanistic studies revealed that this remote borylation involved a radical reaction pathway.  相似文献   

12.
A nickel/N‐heterocyclic carbene catalytic system has been established for decarbonylative borylation of amides with B2nep2 by C?N bond activation. This transformation shows good functional‐group compatibility and can serve as a powerful synthetic tool for late‐stage borylation of amide groups in complex compounds. More importantly, as a key intermediate, the structure of an acyl nickel complex was first confirmed by X‐ray analysis. Furthermore, the decarbonylative process was also observed. These findings confirm the key mechanistic features of the acyl C?N bond activation process.  相似文献   

13.
[reaction: see text] The synthesis of arylboronic acids and aryl trifluoroborates in a one-pot sequence by Ir-catalyzed borylation of arenes is reported. To prepare the arylboronic acids, the Ir-catalyzed borylation is followed by oxidative cleavage of the boronic ester with NaIO4. To prepare the aryltrifluoroborate, the Ir-catalyzed borylation is followed by displacement of pinacol by KHF2. These two-step sequences give products that are more reactive toward subsequent chemistry than the initially formed pinacol boronates.  相似文献   

14.
A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2neop2), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.  相似文献   

15.
Catalytic C?H borylation has been reported using newly designed iron complexes bearing a 4,5,6,7‐tetrahydroisoindol‐2‐ide‐based PNP pincer ligand. The reaction tolerated various five‐membered heteroarenes, such as pyrrole derivatives, as well as six‐membered aromatic compounds, such as toluene. Successful examples of the iron‐catalyzed sp3 C?H borylation of anisole derivatives were also presented.  相似文献   

16.
Cationic zinc Lewis acids catalyse the C–H borylation of heteroarenes using pinacol borane (HBPin) or catechol borane (HBCat). An electrophile derived from [IDippZnEt][B(C6F5)4] (IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) combined with N,N-dimethyl-p-toluidine (DMT) proved the most active in terms of C–H borylation scope and yield. Using this combination weakly activated heteroarenes, such as thiophene, were amenable to catalytic C–H borylation using HBCat. Competition reactions show these IDipp–zinc cations are highly oxophilic but less hydridophilic (relative to B(C6F5)3), and that borylation proceeds via activation of the hydroborane (and not the heteroarene) by a zinc electrophile. Based on DFT calculations this activation is proposed to proceed by coordination of a hydroborane oxygen to the zinc centre to generate a boron electrophile that effects C–H borylation. Thus, Lewis acid binding to oxygen sites of hydroboranes represents an under-developed route to access reactive borenium-type electrophiles for C–H borylation.

Cationic zinc Lewis acids catalyse the C–H borylation of heteroarenes using pinacol borane (HBPin) or catechol borane (HBCat).  相似文献   

17.
Ghayoor A. Chotana 《Tetrahedron》2008,64(26):6103-6114
Iridium-catalyzed borylation has been applied to various substituted thiophenes to synthesize poly-functionalized thiophenes in good to excellent yields. Apart from common functionalities compatible with iridium-catalyzed borylations, additional functional group tolerance to acyl (COMe) and trimethylsilyl (TMS) groups was also observed. High regioselectivities were observed in borylation of 3- and 2,5-di-substituted thiophenes. Electrophilic aromatic C-H/C-Si bromination on thiophene boronate esters is shown to take place without breaking the C-B bond, and one-pot C-H borylation/Suzuki-Miyaura cross-coupling has been accomplished on 2- and 3-borylated thiophenes.  相似文献   

18.
We report the regiospecific, rhodium-catalyzed borylation of saturated terminal C-H bonds in molecules with existing functionality. Moderate to good yields were obtained with the organic substrate in excess and as limiting reagent. The borylations of trialkylamines, protected alcohols, protected ketones, and fluoroalkanes occurred regiospecifically at the methyl group that is least sterically hindered. Reactions were also conducted that probed electronic effects on the alkyl borylation. These reactions showed that the borylation occurred preferentially at the methyl group that is most electron-deficient. Methods to conduct tandem borylation of C-H bonds and conversion of the resulting boronate esters to alcohols, alkylarenes, and alkyltrifluoroborates were also developed.  相似文献   

19.
para ‐Selective C−H borylation of benzamides and pyridines has been achieved by cooperative iridium/aluminum catalysis. A combination of iridium catalysts commonly employed for arene C−H borylation and bulky aluminum‐based Lewis acid catalysts provides an unprecedented strategy for controlling the regioselectivity of C−H borylation to give variously substituted (hetero)arylboronates, which are versatile synthetic intermediates for complex multi‐substituted aromatic compounds.  相似文献   

20.
Metal-catalyzed borylation of alkenes, alkynes, arenes, and organic halides with B-B or H-B compounds has been developed for the synthesis of organoboron compounds from simple organic substrates. The platinum(0)-catalyzed addition of bis(pinacolato)diboron to alkenes and alkynes provided a method for the stereoselective synthesis of cis-bis(boryl)alkanes or cis-bis(boryl)alkenes. The addition of diboron to 1,3-dienes with platinum(0) complexes provided a new access to cis-1,4-bis(boryl)-2-butene derivatives, which are versatile reagents for diastereoselective allylboration of carbonyl compounds. The first one-step procedure for the syntheses of aryl-, vinyl-, and allylboronates was achieved via crosscoupling reactions of diborons with aryl and 1-alkenyl halides or triflates and allyl acetates. Direct C-H borylation of arenes catalyzed by a transition metal complex was studied as an economical protocol for the synthesis of a variety of arylboron derivatives. Ir-catalyzed C-H borylation of arenes, heteroarenes, and benzylic positions of alkylarenes by bis(pinacolato)diboron or pinacolborane furnished aryl-, heteroaryl-, and benzylboron compounds. This article discusses the mechanisms of these reactions and their synthetic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号