首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a standing acoustic wave on the development of long-wave convective perturbations in a horizontal layer with thermally insulated boundaries is investigated. The main two-dimensional flow is determined. A nonlinear amplitude equation with spatially-periodic coefficients is derived for investigating the stability of the main flow and secondary convection flows in the neighborhood of the stability threshold. The intensity of the acoustic field is assumed to be low. It is shown that the acoustic action leads to destabilization of the layer. Plane and three-dimensional perturbations are critical at large and small Prandtl numbers, respectively. Nonlinear one-dimensional steady-state solutions of the amplitude equation are obtained and their stability is investigated.  相似文献   

2.
The linear approximation is used to study the stability of two- and three-dimensional higher-order modes of a nonlinear wave equation against exponentially increasing perturbations. For all the nonlinear models considered the higher modes are unstable; the number of exponentially increasing perturbations and their growth rate are determined by the mode number and the form of the nonlinear relationship. Numerical tests are described in the parabolic approximation on the stability of the first axially symmetric mode against small amplitude perturbations and the conditions are determined under which higher-order modes can be observed.  相似文献   

3.
可压缩燃烧反应转捩混合层直接数值模拟   总被引:1,自引:0,他引:1  
苗文博  程晓丽  王强 《力学学报》2008,40(1):114-120
针对三维时间发展可压缩氢/氧非预混燃烧反应平面自由剪切混合层,采用5阶迎风/6阶对称紧致混合差分格式以及3阶显式Runge-Kutta时间推进方法,直接数值模拟了伴随燃烧产物生成和反应能量释放, 流动受扰动激发失稳并转捩的演化过程. 在转捩初期, 获得了${\it\Lambda}$涡、马蹄涡等典型的大尺度拟序结构,观察到了流动失稳后发生双马蹄涡三维对并的现象, 大尺度结构呈较好的对称性.在流动演化后期, 大尺度结构逐次破碎形成小尺度结构, 混合层进入转捩末期,呈明显的不对称性.   相似文献   

4.
This paper examines three-dimensional disturbances of a plane steady shear flow of simple fluids with short memory. Under the assumption of nearly-viscometric flow, constitutive equations are derived and then a general form of the Reynolds-Orr energy equation is obtained. With the aid of this derived energy formula, sufficient conditions are generated for the stability of three-dimensional disturbances of the planar viscometric flow. These conditions are analysed and a comparison is made with the corresponding two-dimensional stability problem. There is a strong indication that the basic flow is less stable against three-dimensional disturbances than against two-dimensional ones.  相似文献   

5.
Linear stability of two-dimensional steady flow in wavy-walled channels   总被引:1,自引:0,他引:1  
Linear stability of fully developed two-dimensional periodic steady flows in sinusoidal wavy-walled channels is investigated numerically. Two types of channels are considered: the geometry of wavy walls is identical and the location of the crest of the lower and upper walls coincides (symmetric channel) or the crest of the lower wall corresponds to the furrow of the upper wall (sinuous channel). It is found that the critical Reynolds number is substantially lower than that for plane channel flow and that when the non-dimensionalized wall variation amplitude is smaller than a critical value (about 0.26 for symmetric channel, 0.28 for sinuous channel), critical modes are three-dimensional stationary and for larger , two-dimensional oscillatory instabilities set in. Critical Reynolds numbers of sinuous channel flows are smaller for three-dimensional disturbances and larger for two-dimensional disturbances than those of symmetric channel flows. The disturbance velocity distribution obtained by the linear stability analysis suggests that the three-dimensional stationary instability is mainly caused by local concavity of basic flows near the reattachment point, while the critical two-dimensional mode resembles closely the Tollmien–Schlichting wave for plane Poiseuille flow.  相似文献   

6.
The flow stability in a boundary layer with an inhomogeneous spanwise-periodic velocity profile modeling the streaky structure that develops at a high level of turbulence of the incident flow is analyzed in the three-dimensional formulation for perturbations with an arbitrary transverse period. It is shown that in the presence of inhomogeneity the dispersion relation for the Tollmien-Schlichting waves is split into two branches periodic in the transverse wave number, which correspond to symmetric and antisymmetric modes. The solution for the packet of inhomogeneous-flow modes generated by localized time-periodic fluid injection/ejection is found. The shape of this packet corresponds qualitatively to the shape of the Tollmien-Schlichting wave packet, but the fine perturbation structure inside it is sharply different.  相似文献   

7.
The paper studies the hydroelastic stability of two parallel identical rectangular plates interacting with a flowing fluid confined between them. General equations describing the behavior of ideal compressible liquid in the case of small perturbations are written in terms of the perturbation velocity potential and transformed using the Bubnov–Galerkin method. The small deformations of elastic plates are defined using the first-order shear deformation plate theory. A mathematical formulation of the dynamic problem for elastic structures is developed using the variational principle of virtual displacements, which takes into account the work done by the inertial forces and hydrodynamic pressure. The numerical solution of the problem is carried out in three-dimensional formulation by means of the finite element method. A stability criterion is based on the analysis of complex eigenvalues of the coupled system of equations obtained for different values of flow velocity. The existence of different types of instability has been shown depending on the combinations of the kinematic boundary conditions defined at the edges of both plates. We considered both the symmetric and asymmetric types of clamping. It has been found that the dependence of the lowest eigenfrequency of two parallel plates on the height of quiescent fluid is nonmonotonic with a pronounced peak. At the same time, critical velocities of instability change insignificantly if the distance between plates is greater than half of the maximum linear dimensions of the structure. It should be noted that the critical velocities of divergence increase monotonically with growth of the height of the fluid layer, but critical velocities for the onset of flutter instability have sharp jumps. The cause of these jumps is a change in the mode shapes at which the system loses stability.  相似文献   

8.
董帅  林殿吉  吕玉坤 《力学学报》2016,48(2):327-335
导电流体在法向外置磁场的作用下,在贴近壁面处会形成哈特曼边界层.哈特曼边界层的稳定性研究对电磁冶金过程和热核聚变反应冷却系统等相关设备的设计和运行都有着十分重要的意义.本文采用非正则模态稳定性分析方法,对两无限大绝缘平行平板内导电流体流动的稳定性进行了研究.通过在时间上迭代求解扰动变量的控制方程组和伴随控制方程组,获得了在磁场作用下初级扰动的增长情况及其空间分布形式,分析了磁场强度对最优扰动增长倍数Gmax、最优展向波数βopt和最优时刻topt的影响,并考察了上下两个哈特曼边界层之间的相互作用.结果表明,最优初始扰动的空间分布形式为沿着流场方向的漩涡,关于法向方向对称或者反对称.当哈特曼数Ha较大时(Ha>10),对称漩涡和反对称漩涡形式的初始扰动增长倍数基本相等;上下两个哈特曼边界层可以认为是彼此独立的,不会相互影响,此时最优扰动增长倍数Gmax与局部雷诺数R的平方成正比,相应的最优展向波数βopt和最优时刻topt均正比于哈特曼数Ha.当哈特曼数Ha较小时(Ha<10),反对称漩涡形式的初始扰动更为不稳定,其增长倍数大于对称漩涡的增长倍数,且上下两个边界层之间存在着一定的相互作用,并对整个流场的稳定性产生一定的影响.   相似文献   

9.
10.
The general form of the convection–diffusion equation governing the evolution of the surface concentration of an insoluble surfactant over an evolving interface is reviewed and discussed for three-dimensional, axisymmetric, and two-dimensional configurations. The linearized form of the evolution equation is then derived around cylindrical and planar shapes in a framework that is suitable for carrying out a linear stability analysis for axisymmetric or two-dimensional perturbations. Particular attention is paid to the cases of quiescent unperturbed fluids, unidirectional shear flow, and elongational flow. By way of application, the linearized transport equations are combined with Stokes-flow hydrodynamics to investigate the stability of an elongating cylindrical viscous thread suspended in an ambient viscous fluid or in a vacuum, and the stability of a two-dimensional interface separating two semi-infinite fluids and stretched under the action of an orthogonal stagnation-point flow. The results illustrate the possibly important role of the surfactant on the linear growth of periodic waves on the cylindrical interface, and reveal that the surfactant has no effect on the stability of the planar interface.  相似文献   

11.
We investigate the interaction of pressure waves with the shear turbulence in a supersonic jet flow obtained from the direct numerical integration of the time-dependent, three-dimensional Euler equations. The resulting self-sustaining turbulent jet flow matches closely the relevant time and length scales of atmospheric turbulence. N-waves, characteristic of sonic booms, are simulated by perturbing the pressure profile and following these perturbations in space and time. The results reproduce most of the wave forms reported in laboratory experiments and in flight test data.  相似文献   

12.
A study is made in the linear approximation, within the scope of the ideal fluid, of the asymptotic behavior of three-dimensional localized perturbations of the parameters of a shear flow which over considerable periods of time turn into growing and propagating wave packets. The behavior of the packets is studied in every possible system of coordinates moving with constant velocity parallel to the plane of the velocity shear. Mathematically, the problem reduces to using the method of steepest descent to study the asymptotic behavior of double Fourier integrals which depend parametrically on these velocities. The saddle points which determine this asymptotic behavior are found numerically. A region is indicated in a plane of flow parallel to the velocity shear which is moving and expanding linearly with time, and in which growing perturbations are found over long periods of time. The results obtained enabled us to write down the criteria for absolute and convective instability. This problem has been considered previously for flows of an ideal fluid with a shear discontinuity in the velocity [1, 2] and for flows in a wake [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, 8–14, March–April, 1987.The author wishes to express his sincere gratitude to A. G. Kulikovskii for formulating the problem and for advice on numerous occasions.  相似文献   

13.
The problem of stability in a compressible boundary layer, as opposed to an incompressible layer, involves many parameters and requires consideration of three-dimensional perturbations. The transverse component of the velocity, the thermal regime at the wall, etc., take on great significance. Investigation of all aspects of this problem requires systematic calculations performed by electronic computers. There do exist a few calculations of stability of a compressible boundary layer with respect to three-dimensional disturbances for particular cases. It follows from those studies (see, for example, [1]) that consideration of three-dimensional perturbations and of the transverse component of the basic flow velocity is important. Many aspects of this problem remain uninvestigated. Aside from the sheer cumbersomeness of the problem, there exist purely mathematical difficulties connected with the presence of a small parameter with higher derivatives in the differential equations for the perturbations, which causes losses in accuracy of calculation. In this present study an algorithm will be developed for solution of the problem of stability of a compressible boundary layer relative to three-dimensional disturbances with consideration of the transverse component of the basic velocity. Calculations are performed for a boundary layer on a plane thermally insulating plate, and the effects of the transverse velocity component and the three-dimensionality of the perturbations on stability at various Mach numbers are demonstrated.  相似文献   

14.
An exact analytic solution of the problem of unsteady convective mass transfer to a spherical droplet (bubble) from an arbitrary three-dimensional linear deformational shear flow, whose undisturbed velocity field is given by a symmetric shear tensor, is obtained in the diffusion boundary layer approximation. The dependence of the mean Sherwood number on time and the Péclet number is determined. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 111–119, November–December, 1986. The authors are grateful to Yu. S. Ryazantsev and L. A. Chudov for their interest and useful comments.  相似文献   

15.
Many studies, both theoretical and experimental, have been dedicated to the stability of flow in a circular tube (see, for example, review [1]). In every case mathematical investigation has not succeeded in obtaining an expression for hydrodynamic instability of such a flow for disturbances of sufficiently low amplitude. (An exception is [2].) Experiment also indicates the stability of such a flow [3], with a laminar mode being extended to Reynolds numbers of the order of tens of thousands. These facts are the basis for the assumption that the flow of a viscous incompressible liquid in a circular tube is stable for small perturbations. However, there is no analytical or even numerical proof of this hypothesis. Moreover, some studies, for example [2], indicate the instability of such a flow in relation to three-dimensional nonaxiosymmetric perturbations. The analysis of hydrodynamic stability with respect to three-dimensional disturbances of flow within a circular tube conducted in this study showed the stability of the flow over a wide range of wave numbers and Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 20–24, January–February, 1973.  相似文献   

16.
The deformation stability relative to small perturbations is analyzed for weakly inhomogeneous viscous media on the assumption that both the main flow and perturbation field are three-dimensional. To test the damping or growth of initial perturbations, sufficient estimates based on the use of variational inequalities in different function spaces (energy estimates) are obtained. The choice of function space determines the measures of the parameter deviations, which may be different for the initial and current parameters. The unperturbed process chosen is a fairly arbitrary unsteady flow of homogeneous incompressible viscous fluid in a three-dimensional region of Eulerian space. At the initial instant, not only the kinematics of the motion but also the density and viscosity of the fluid are disturbed and the medium is therefore called weakly inhomogeneous. On the basis of the integral relation methods developed in recent years, sufficient integral estimates are obtained for lack of perturbation growth in the mean-square sense (in theL 2 space measure). The rate of growth or damping of the kinematic perturbations depends linearly on the initial variations of the kinematics, density and viscosity. Illustrations of the general result are given. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 56–67, March–April, 2000. The work was supported by the Russian Foundation for Basic Research (projects No. 99-01-00125 and No. 99-01-00250) and by the Federal Special “Integration” Program (project No. 426).  相似文献   

17.
Flow between two plates is considered for a fluid obeying the DeWitt rheological equation of state with the Jaumann derivative. It is found analytically that the steady-state Couette flow is stable or unstable with respect to plane shear perturbations when the Weissenberg numbers are less or greater than unity, respectively. The flow acceleration stage is studied analytically and numerically, a comparison with the case of an Oldroyd fluid is carried out, and the neutral stability curves are constructed. The fundamental role of perturbations of the type considered among the set of instability types which can act on the fluid in such a flow is noted.  相似文献   

18.
The dynamics of perturbations in shallow water and incompressible stratified fluid flows with constant horizontal shear are described using the nonmodal analysis. It is shown that the shear flow perturbations can be divided into two classes on the basis of the potential vorticity: rapidly oscillating wave perturbations with zero potential vorticity and slow vortex perturbations with nonzero potential vorticity. In the cases of weak and strong shear the main features of the dynamics of wave and vortex perturbations are studied analytically (using the WKBG method) and numerically. It is shown that for large times the wave perturbation energy increases linearly, i.e., the shear flow is algebraically unstable due to the growth of rapid wave perturbations. This instability can be of importance in processes of turbulence development and surface and internal wave generation.  相似文献   

19.
20.
《Fluid Dynamics Research》1994,13(3-4):167-195
In this paper infinite plane Couette flow in a viscous incompressible fluid is considered subject to general three-dimensional perturbations and the equations of motion are linearized. Furthermore, initial-value problems are posed and a set of closed-form solutions are obtained for a variety of conditions, such as the system under the influence of: (i) a mass source; (ii) an external force; or (iii) initial vorticity. The result is a knowledge of both the early transient dynamics and the near spatial field behavior, as well as the state after a long time and the far field behavior. It is shown that the solutions can be considered as fundamental (in the sense that source-sink solutions are regarded fundamental for irrotational motion) and therefore are useful in analyzing other boundary-value, initial-value problems where the basic flow can be synthesized from piece-wise linear (constant shear) variations. To this end a generalized Green's function for the system is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号