首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
We discuss the numerical modeling of the infiltration of contaminated water into unsaturated porous media. A system with contaminant transport, dispersion, and adsorption is considered. The mathematical model for unsaturated flow is based on Richards nonlinear and degenerate equation. Nonlinear adsorption is represented by adsorption isotherms and kinetic rates. An accurate numerical method is constructed in 1D which can be a good candidate for the solution of inverse problems to determine model parameters in the adsorption part of the model. Our numerical solution is based on the method of lines (MOL method) where space discretization leads to the corresponding system of ODEs. We substantially use the numerical modeling of interfaces, separating fully saturated, partially saturated, and dry zones in the underground. Finally, in a series of numerical experiments and in comparisons with HYDRUS (?imunek et al., The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably/saturated media, version 2.0, Rep. IGWMC-TPS-70, 202 pp., Int. Groundwater Model. Cent., Colo. Sch of Mines, Golden, Colo), we demonstrate the effectiveness of our method.  相似文献   

2.
3.
The classic Kozeny–Carman equation (KC) uses parameters that are empirically based or not readily measureable for predicting the permeability of unfractured porous media. Numerous published KC modifications share this disadvantage, which potentially limits the range of conditions under which the equations are applicable. It is not straightforward to formulate non-empirical general approaches due to the challenges of representing complex pore and fracture networks. Fractal-based expressions are increasingly popular in this regard, but have not yet been applied accurately and without empirical constants to estimating rock permeability. This study introduces a general non-empirical analytical KC-type expression for predicting matrix and fracture permeability during single-phase flow. It uses fractal methods to characterize geometric factors such as pore connectivity, non-uniform grain or crystal size distribution, pore arrangement, and fracture distribution in relation to pore distribution. Advances include (i) modification of the fractal approach used by Yu and coworkers for industrial applications to formulate KC-type expressions that are consistent with pore size observations on rocks. (ii) Consideration of cross-flow between pores that adhere to a fractal size distribution. (iii) Extension of the classic KC equation to fractured media absent empirical constants, a particular contribution of the study. Predictions based on the novel expression correspond well to measured matrix and fracture permeability data from natural sandstone and carbonate rocks, although the currently available dataset for fractures is sparse. The correspondence between model calculation results and matrix data is better than for existing models.  相似文献   

4.
Acidizing technology has been widely applied when developing naturally fractured–vuggy reservoirs. So testing and evaluating acidizing wells’ pressure behavior become necessary for further improving the wells’ performance. Analyzing transient pressure data can estimate some key reservoir parameters. Generally speaking, carbonate minerals are usually composed of dolomite and calcite which are easy to be dissolved by hydrochloric acid which is often used to react with the rock to create a high conductivity channel, namely wormhole. Pressure transient behavior in fractured–vuggy reservoirs has been studied for many years; however, the models of acidizing wells with wormholes were not reported in previous studies. This article presented an analytical model for wormholes in naturally fractured–vuggy carbonate reservoirs, and wormholes solutions were obtained through point sink integral method. The results were validated accurately by comparing with previous results and numerical simulation. Then in this paper, type curves were established to recognize the flow characteristics, and flow was divided into six flow regimes comprehensively. The calculative results showed that the characteristics of type curves were influenced by inter-porosity flow factor, wormhole number, fluids capacitance coefficient. We also showed that the pressure behavior was affected by the angles between wormholes, and the pressure depletion increased as the angle decreased, because the wormholes were closer, their interaction became stronger. At the end, a reservoir example was showed to demonstrate the methodology of new type curve analysis.  相似文献   

5.
The effect of gas–skeleton heattransfer processes on propagation of fast and slow waves in a porous medium is examined. Frequency intervals are identified, in which attenuation of waves in a gassaturated porous medium is mainly controlled by the heattransfer processes.  相似文献   

6.
7.
Younes  A.  Ackerer  Ph.  Mose  R. 《Transport in Porous Media》1999,35(3):375-394
Case 5, Level 1 of the international HYDROCOIN groundwater flow modeling project is an example of idealized flow over a salt dome. The groundwater flow is strongly coupled to solute transport since density variations in this example are large (20%).Several independent teams simulated this problem using different models. Results obtained by different codes can be contradictory. We develop a new numerical model based on the mixed hybrid finite elements approximation for flow, which provides a good approximation of the velocity, and the discontinuous finite elements approximation to solve the advection equation, which gives a good approximation of concentration even when the dispersion tensor is very small. We use the new numerical model to simulate the salt dome flow problem.In this paper we study the effect of molecular diffusion and we compare linear and nonlinear dispersion equations. We show the importance of the discretization of the boundary condition on the extent of recirculation and the final salt distribution. We study also the salt dome flow problem with a more realistic dispersion (very small dispersion tensor). Our results are different to prior works with regard to the magnitude of recirculation and the final concentration distribution. In all cases, we obtain recirculation in the lower part of the domain, even for only dispersive fluxes at the boundary. When the dispersion tensor becomes very small, the magnitude of recirculation is small. Swept forward displacement could be reproduced by using finite difference method to compute the dispersive fluxes instead of mixed hybrid finite elements.  相似文献   

8.
Single-phase permeability k has intensively been investigated over the past several decades by means of experiments, theories and simulations. Although the effect of surface roughness on fluid flow and permeability in single pores and fractures as well as networks of fractures was studied previously, its influence on permeability in a random mass fractal porous medium constructed of pores of different sizes remained as an open question. In this study, we, therefore, address the effect of pore–solid interface roughness on single-phase flow in random fractal porous media. For this purpose, we apply a mass fractal model to construct porous media with a priori known mass fractal dimensions \(2.579 \le D_{\mathrm{m}} \le 2.893\) characterizing both solid matrix and pore space. The pore–solid interface of the media is accordingly roughened using the Weierstrass–Mandelbrot approach and two parameters, i.e., surface fractal dimension \(D_{\mathrm{s}}\) and root-mean-square (rms) roughness height. A single-relaxation-time lattice Boltzmann method is applied to simulate single-phase permeability in the corresponding porous media. Results indicate that permeability decreases sharply with increasing \(D_{\mathrm{s}}\) from 1 to 1.1 regardless of \(D_{\mathrm{m}}\) value, while k may slightly increase or decrease, depending on \(D_{\mathrm{m}}\), as \(D_{\mathrm{s}}\) increases from 1.1 to 1.6.  相似文献   

9.
We examine a class of hydrocarbon reservoirs whose thermodynamic state remains close to the critical point during the all period of reservoir exploitation. Such a situation is typical for the so-called gas–condensate systems, in which the liquid phase is formed from gas when pressure decreases. Due to proximity to critical point, the mixture contains many components which are neutral with respect to the phase state. This determines a low thermodynamic degree of freedom of the system. As the results, the mathematical flow model allows a significant reduction in the number of conservation equations, whatever the number of chemical components. In the vicinity of a well, the system may be reduced to one transport equation for saturation. This nonlinear model yields exact analytical solutions when the flow is self-similar. In more general case of flow, we develop partially linearized solutions which are shown to be sufficiently exact. The spectrum of examined cases covers the flow in a medium with a sharp heterogeneity and a sharp variation in the flow rate. A significant relative gas flow past liquid gives rise to a convective mass exchange phenomenon which appears highly different from that observed in static. In the case of a medium discontinuity, the convective mass exchange gives rise to a phenomenon of condensate saturation billow formation. A sharp variation in the flow rate leads to a hysteretic behavior of the saturation field.  相似文献   

10.
The development and validation of a numerical simulation model of the flow through embankment dams is described. The paper focuses on basic verification studies, that is, comparisons with analytical solutions and data from laboratory experiments. Two experimental studies, one dealing with the flow in a Hele–Shaw cell and the other with the flow through a bed of packed glass beads, are also described. Comparisons are carried out with respect to the phreatic surfaces, pressure profiles, seepage levels and discharges. It is concluded that the agreement between experimental, analytical and numerical results is generally satisfactory.  相似文献   

11.
Several numerical simulations were conducted to compare the results with analytical solutions given by “Abrupt-Interface Solution for Carbon Dioxide Injection into Porous Media” by M. Dentz and D. Tartakovsky, “Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution During Injection” by J. M. Nordbotten et al.  相似文献   

12.
We consider the compressible Navier–Stokes equations for viscous and barotropic fluids with density dependent viscosity. The aim is to investigate mathematical properties of solutions of the Navier–Stokes equations using solutions of the pressureless Navier–Stokes equations, that we call quasi solutions. This regime corresponds to the limit of highly compressible flows. In this paper we are interested in proving the announced result in Haspot (Proceedings of the 14th international conference on hyperbolic problems held in Padova, pp 667–674, 2014) concerning the existence of global weak solution for the quasi-solutions, we also observe that for some choice of initial data (irrotationnal) the quasi solutions verify the porous media, the heat equation or the fast diffusion equations in function of the structure of the viscosity coefficients. In particular it implies that it exists classical quasi-solutions in the sense that they are \({C^{\infty}}\) on \({(0,T)\times \mathbb{R}^{N}}\) for any \({T > 0}\). Finally we show the convergence of the global weak solution of compressible Navier–Stokes equations to the quasi solutions in the case of a vanishing pressure limit process. In particular for highly compressible equations the speed of propagation of the density is quasi finite when the viscosity corresponds to \({\mu(\rho)=\rho^{\alpha}}\) with \({\alpha > 1}\). Furthermore the density is not far from converging asymptotically in time to the Barrenblatt solution of mass the initial density \({\rho_{0}}\).  相似文献   

13.
In a recent article by Barletta and Nield (Transport in Porous Media, DOI , 2009), the title problem for the fully developed parallel flow regime was considered assuming isoflux/isothermal wall conditions. For the limiting cases of the forced and the free convection, analytical solutions were reported; for the general case, numerical solutions were reported. The aim of the present note is (i) to give an analytical solution for the full problem in terms of the Weierstrass elliptic P-function, (ii) to illustrate this general approach by two easily manageable examples, and (iii) to rise a couple of questions of basic physical interest concerning the interplay between the viscous dissipation and the pressure work. In this context, the concept of “eigenflow” introduced by Barletta and Nield is discussed in some detail.  相似文献   

14.
In a very recent paper by Aydin and Kaya (Transp. Porous Media (to appear), 2008) the combined effects of viscous dissipation and surface mass flux on the forced-convection boundary-layer flow was considered. However, as the present Note shows, the thermal boundary condition imposed at the outer edge of the boundary-layer by Aydin and Kaya is incompatible with the energy equation, and thus the results of their paper are in error.  相似文献   

15.
In a recent article, Fourar et al. (Transp Porous Med, 2005, doi:10.1007/s11242-004-6800-6) analyzed the effect of heterogeneity in the permeability distribution on Forchheimer flow in porous media. They derived expressions to calculate the effective inertial coefficient in serial layers, parallel layers, and two-dimensional correlated media. Here, we highlight an inconsistency in their first-order expression for serial layers and extend their findings by providing closed-form expressions for the effective inertial coefficient in the case of a lognormal permeability distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号