首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A rapid, sensitive, and simple HPLC–MS–MS method, with electro-spray ionization and cetirizine as internal standard (IS), has been developed and validated for simultaneous quantification of fexofenadine and pseudoephedrine in human plasma. The analytes were isolated from plasma by solid-phase extraction (SPE) on Oasis HLB cartridges. The compounds were chromatographed on an RP 18 column with a mixture of ammonium acetate (10 mm, pH 6.4) and methanol as mobile phase. Quantification of the analytes was based on multiple reaction monitoring (MRM) of precursor-to-product ion pairs m/z 502 → 466 for fexofenadine, m/z 166 → 148 for pseudoephedrine, and m/z 389 → 201 for cetirizine. The linear calibration range for both analytes was 2–1,700 ng mL−1 (r = 0.995), based on analysis of 0.1 mL plasma. Extraction recovery was 91.5 and 80.88% for fexofenadine and pseudoephedrine, respectively. The method was suitable for analysis of human plasma samples obtained 72 h after administration of a drug containing both fexofenadine and pseudoephedrine.  相似文献   

2.
A stability-indicating reversed-phase liquid chromatographic (RPLC) method has been established for analysis of ramipril (RAM) and moexipril hydrochloride (MOEX.HCl) in the presence of the degradation products generated in studies of forced decomposition. The drug substances were subjected to stress by hydrolysis (0.1 m NaOH and 0.1 m HCl), oxidation (30% H2O2), photolysis (254 nm), and thermal treatment (80 °C). The drugs were degraded under basic and acidic conditions and by thermal treatment but were stable under other stress conditions investigated. Successful separation of the drugs from the degradation products was achieved on a cyanopropyl column with 40:60 (v/v) aqueous 0.01 m ammonium acetate buffer (pH 6)–methanol as mobile phase at a flow rate of 1 mL min−1. Detection was by UV absorption at 210 nm. Response was a linear function of concentration over the range 5–50 μg mL−1 (r > 0.9995), with limits of detection and quantitation (LOD and LOQ) of 0.04 and 0.09 μg mL−1, respectively, for RAM and 0.014 and 0.32 μg mL−1, respectively, for moexipril. The method was validated for specificity, selectivity, solution stability, accuracy, and precision. Statistical analysis proved the method enabled reproducible and selective quantification of RAM and MOEX as the bulk drug and in pharmaceutical preparations. Because the method effectively separates the drugs from their degradation products, it can be used as stability-indicating.  相似文献   

3.
A rapid, sensitive, and accurate high-performance liquid-chromatographic–mass spectrometric (HPLC–MS) method, with estazolam as internal standard, has been developed and validated for determination of aripiprazole in human plasma. After liquid–liquid extraction the compound was analyzed by HPLC on a C18 column, with acetonitrile—30 mm ammonium acetate containing 0.1% formic acid, 58:42 (v/v), as mobile phase, coupled with electrospray ionization mass spectrometry (ESI-MS). The protonated analyte was quantified by selected-ion recording (SIR) with a quadrupole mass spectrometer in positive-ion mode. Calibration plots were linear over the concentration range 19.9–1119.6 ng mL−1. Intra-day and inter-day precision (CV%) and accuracy (RE%) for quality-control samples (37.3, 124.4, and 622.0 ng mL−1) ranged between 2.5 and 9.0% and between 1.3 and 3.5%, respectively. Extraction recovery of aripiprazole from plasma was in the range 75.8–84.1%. The method enables rapid, sensitive, precise, and accurate measurement of the concentration of aripiprazole in human plasma.  相似文献   

4.
A simple, rapid, and precise reversed-phase high-performance liquid chromatographic method has been developed for simultaneous determination of losartan potassium, ramipril, and hydrochlorothiazide. The three drugs were separated on a 150 mm × 4.6 mm i.d., 5 μm particle, Cosmosil C18 column. The mobile phase was 0.025 m sodium perchlorate–acetonitrile, 62:38 (v/v), containing 0.1% heptanesulphonic acid, pH adjusted to 2.85 with orthophosphoric acid, at a flow rate of 1.0 mL min−1. UV detection was performed at 215 nm. The method was validated for linearity, accuracy, precision, and limit of quantitation. Linearity, accuracy, and precision were acceptable in the ranges 35–65 μg mL−1 for losartan, 1.75–3.25 μg mL−1 for ramipril, and 8.75–16.25 μg mL−1 for hydrochlorothiazide.  相似文献   

5.
Summary An isocratic, reversed-phase liquid chromatographic (LC) method has been developed for the simultaneous determination of azelaic and benzoic acids in pharmaceutical creams. The compounds were separated on a C18 column (4 μm particles); the mobile phase was methanolwater, 40∶60, containing 10mm ammonium acetate and with the pH adjusted to 5.0. Detection was performed at 220 nm. The method was validated for accuracy, linearity, precision, and selectivity. Recoveries at levels corresponding to 80% to 120% of the declared content of the creams ranged from 99.5 to 101.8% and from 100.4 to 102.1% for azelaic and benzoic acids, respectively. The calibration graphs were linear in the ranges 20–1400 μg mL−1 for azelaic acid (correlation coefficient,r 1>0.99999), and 0.1–7.0 μg mL−1 for benzoic acid (r>0.99998).  相似文献   

6.
A method was developed for sampling and selective quantitative determination of typical volatile organic compounds (VOCs) in ambient urban air. A mobile and self-contained dual-channel air sampling tool based on solid phase adsorption was constructed. A simple calibration procedure circumventing the adsorption/desorption process was designed. The method was validated for seven “key-analytes”: n-hexane, 3-methyl-2-pentene, benzene, tetrachloroethene, styrene, 1,2,4-trimethylbenzene and acetophenone. The complete air sampling equipment is easily accommodated in a business suitcase. The lower limits of the practical working ranges are between 0.1 μg m–3 (tetrachloroethene) and 1.2 μg m–3 (benzene). Air samples were collected at a location in Salzburg with heavy motor vehicle traffic and measured in order to prove a satisfactory method performance under practical monitoring conditions. Received: 4 January 1998 / Revised: 14 September 1998 / Accepted: 21 October  相似文献   

7.
(E)-3,5,4′-trimethoxystilbene (BTM-0512) is a resveratrol analog with a variety of pharmacological action, including anti-cancer properties, anti-allergic activity, estrogenic activity, antiangiogenic activity, and vascular-targeting activity against microtubule-destabilization. There is, however, no validated analytical method for quantification of (E)-3,5,4′-trimethoxystilbene in biological matrices, so pharmacokinetic data and suitable methods for determination of the compound in plasma are currently lacking. A rapid and sensitive liquid chromatographic–mass spectrometric method for determination of (E)-3,5,4′-trimethoxystilbene in rat plasma, using carbamazepine as internal standard, has been developed and validated. Plasma samples were treated with acetonitrile to precipitate proteins. Samples were then analyzed by HPLC on a 250mm × 4.6 mm i.d., 5-μm particle, C18 column with methanol–water, 80:20 (v/v), containing 10 mm ammonium acetate and 0.2% formic acid (pH 3.0), as mobile phase, delivered at 0.85 mL min−1. A single-quadrupole mass spectrometer with an electrospray interface operated in selected-ion monitoring mode was used to detect [M + H]+ ions at m/z 271.3 for (E)-3,5,4′-trimethoxystilbene and m/z 237.5 for the internal standard. (E)-3,5,4′-trimethoxystilbene and the internal standard eluted as sharp, symmetrical peaks with retention times of 8.9 and 4 min, respectively. Calibration plots for (E)-3,5,4′-trimethoxystilbene in rat plasma at concentrations ranging from 0.01 to 5.0 μg mL−1 were highly linear. Intra-day and inter-day precision, as RSD, was <12.9%, and accuracy was in the range 94.8–104.7%. The limit of detection in plasma was 0.005 μg mL−1. The method was successfully used to determine the concentration of (E)-3,5,4′-trimethoxystilbene after oral administration of 86 mg kg−1 of the drug to Sprague–Dawley rats and can be used to investigate the pharmacokinetics of the compound.  相似文献   

8.
Summary An HPLC column-switching method has been developed and validated for the enantioselective determination of (R)- and (S)-carvedilol in human plasma. Sample preparation was performed either off-line, by extraction with trichloromethane and back-extraction into 0.01m aqueous citric acid which was injected on to a LiChrosorb RP 8 column, or on-line, by injecting diluted (0.1m formic acid) plasma on to a LiChrosorb ADS column. In both instances separation was performed by gradient elution and on-line transfer of the fraction containing, the carvedilol on to an enantioselective Teicoplanin column. The enantiomers of carvedilol were separated isocratically by use of methanol-acetonitrile-triethylammonium acetate, 70:30:0.05 (v/v/w), as mobile phase. With fluorescence detection the limits of quantitation were 0.30 ng mL−1 for (R)-carvedilol and 0.26 ng mL−1 for (S)-carvedilol; these were sufficient to enable investigation of the effect of exercise on plasma concentrations of (R)- and (S)-carvedilol after oral administration of either the racemate or the pure enantiomers. Although the operating conditions were optimized for sample preparation by on-line deproteination on a LiChrospher RP 18 ADS column, the complete method was insufficiently rugged for analysis of large numbers of plasma samples—the enantioselectivity of the Teicoplanin column deteriorated too rapidly because of the transfer of enantioselectivity-poisoning interferences which could not be suppressed sufficiently. In contrast the liquid-liquid sample-extraction procedure combined with column switching resulted in a analytical method with long-term stability. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

9.
Summary A sensitive HPLC method with marbofloxacin (MAR) as internal standard and fluorescence detection is described for the analysis of ofloxacin (OFL) enantiomers in plasma samples. Plasma samples were prepared by adding phosphate buffer (pH 7.4, 0.1m), then extracted with trichloromethane.S-OFL,R-OFL, and the internal standard were separated on a reversed-phase column with water-methanol, 85.5∶14.5, as mobile phase. The concentrations ofS-OFL andR-OFL eluting from the column (retention times 7.5 and 8.7 min, respectively) were monitored by fluorescence detection withλ ex = 331 andλ em = 488 nm. The detection and quantitation limits were 10 and 20 ng mL−1, respectively, forS-OFL and 11 and 21 ng mL−1 forR-OFL. Response was linearly related to concentration in the range 10 to 2500 ng mL−1. Recovery was close to 93% for both compounds. The method was applied to determination of the enantiomers of OFL in plasma samples collected during pharmacokinetic studies.  相似文献   

10.
An isocratic high-performance liquid chromatographic method has been developed for assay of ceftiofur sodium in drug substance and in sterile powder for injection. Chromatography was performed on a 250 mm × 4.6 mm, 5 μm particle, C18 column with a 78:22 (v/v) mixture of 0.02 m disodium hydrogen phosphate buffer (pH adjusted to 6.0 with 85% orthophosphoric acid) and acetonitrile as mobile phase, at a flow rate of 1.0 mL min−1. The separation was monitored by UV detection at 292 nm. Validation of the method for linearity and range, intra- and inter-day precision, accuracy, specificity, recovery, robustness, and limits of quantification and detection yielded good results. The calibration plot was linear from 20.0–120.0 μg mL−1 and the correlation coefficient was 0.9999. It was shown that ceftiofur was degraded under acidic, alkaline, oxidative, and photolytic conditions. The method was found to be stability-indicating and could be used for routine analysis of ceftiofur sodium for injection.  相似文献   

11.
Summary A sensitive HPLC method has been developed for determination of ofloxacin (OFL) in biological fluids. Sample preparation was performed by adding phosphate buffer (pH 7.4, 0.1m) then extraction with trichloromethane. OFL and the internal standard, sarafloxacin (SAR), were separated on a reversed-phase column with aqueous phosphate solution-acetonitrile, 80∶20, as mobile phase. The fluorescence of the column effluent was monitored at λex 338 and λem 425 nm. The retention times were 2.66 and 4.24 min for OFL and SAR, respectively, and the detection and quantitation limits were 8 and 15 ng mL−1, respectively. Plots of response against ofloxacin concentration were linear in the range 8 to 2000 ng mL−1. Recovery was 92.9% for OFL.  相似文献   

12.
Simultaneous determination of arbutin (ART) and l-ascorbic acid (AA) by HPLC with chemiluminescence detection is proposed for the first time. This method is based on the CL reaction of acidic potassium permanganate with ART and AA in the presence of formaldehyde as enhancer. The separation was performed on a C18 column with a 90:10 (v/v) mixture of 0.02 M phosphate buffer and methanol as mobile phase. The effects of several conditions on HPLC resolution and CL emission were studied systematically. The linear ranges were 0.5–50 and 1–200 μg mL−1 for ART and AA, respectively. The detection limits were 0.2 and 0.3 μg mL−1, respectively. The method was successfully applied to the determination of ART and AA in whitening cosmetics.  相似文献   

13.
A reversed phase HPLC method has been investigated for separation and determination of the structural isomers of madecassoside (madecassoside and asiaticoside-B). The isomeric compounds can be isolated with high resolution by adding β-CD in mobile phase on a C18 column. The effect of β-CD concentration on resolution is discussed. The functional group in the separation process is investigated. The correlation coefficient (R 2) of the calibration was 0.9995 over the range of 0.1–5.0 mg mL−1. The method was successfully applied to characterize and determine the madecassoside in Centella extract.  相似文献   

14.
Summary A sensitive, convenient and reliable free-zone capillary electrophoretic method has been developed for the determination of adenylate nucleotides in cell lysates without pre-analytical sample clean up. Simultaneous quantification of AMP, ADP, and ATP can be performed with precision (within run) of 1.7–2.7% and reproducibility (day to day) of 1.3–3.5%. Detection limits for AMP, ADP, and ATP were 10 μm each and the linear range was 10–200 μm for each. The sample volume required was less than 10 nL. The proposed method greatly simplifies and accelerates determination of cellular ‘adenylate energy charge’, the most reliable measure of cellular energy status.  相似文献   

15.
This study presents a high-performance liquid chromatography–electrospray ionization–mass spectrometric (LC–ESI–MS) method for the simultaneous determination of tramadol and acetaminophen in human plasma using phenacetinum as the internal standard. After alkalization with saturated sodium bicarbonate, both compounds were extracted from human plasma with ethyl acetate and were separated by HPLC on a Hanbon LiChrospher CN column with a mobile phase of 10 mM ammonium acetate buffer containing 0.5% formic acid–methanol (40:60, v/v) at a flow rate of 1 mL min−1. Analytes were determined using electrospray ionization in a single quadrupole mass spectrometer. LC–ESI–MS was performed in the positive selected-ion monitoring (SIM) mode using target ions at [M+H]+ m/z 264.3 for tramadol, [M+H]+ m/z 152.2 for acetaminophen and [M+H]+ m/z 180.2 for phenacetinum. Calibration curves were linear over the range of 5–600 ng mL−1 for tramadol and 0.03–16 μg mL−1 for acetaminophen. The inter-run relative standard deviations were less than 14.4% for tramadol and 12.3% for acetaminophen. The intra-run relative standard deviations were less than 9.3% for tramadol and 7.9% for acetaminophen. The mean plasma extraction recovery for tramadol and acetaminophen were in the ranges of 82.7–85.9 and 83.6–85.3%. The method was applied to study the pharmacokinetics of a new formulation of tramadol/acetaminophen tablet in healthy Chinese volunteers.  相似文献   

16.
A novel simple, sensitive, selective, and rapid high-performance liquid chromatography coupled with tandem mass spectrometry method was developed and validated for quantification of riluzole in human plasma. The chromatography was performed by using a Zorbax-SB-C18 (4.6 × 75 mm, 3.5 μm) column , isocratic mobile phase 0.1% formic acid/acetonitrile (10:90 v/v), and an isotope-labeled internal standard (IS), [13C,15N2]riluzole. The extraction of drug and internal standard was performed by liquid–liquid extraction and analyzed by MS in the multiple reaction monitoring (MRM) mode using the respective [M+H]+ ions, m/z 235.0/165.9 for riluzole and m/z 238.1/169.0 for the IS. The calibration curve was linear over the concentration range 0.5–500.0 ng/ml for riluzole in human plasma. The limit of quantification (LOQ) was demonstrated at 0.5 ng/ml. The within-batch and between-batch precision were 0.6–2.3% and 1.4–5.7%, and accuracy was 97.1–101.1% and 98.8–101.2% for riluzole respectively. Drug and IS were eluted within 3.0 min. The validated method was successfully applied in a bioequivalence study of riluzole in human plasma.  相似文献   

17.
Summary A simple and sensitive isocratic LC method is described for the determination of erythromycins in fermentation broths. A simple technique utilizing acetone-methyl ethyl ketone, 1∶1, as extraction solvent was coupled with suitable chromatographic conditions—compounds were separated on a 250 mm×4.6 mm i.d., 5 μm, reversed-phase column at 65°C with acetonitrile-0.2m K2HPO4 pH7.0-water, 35:5:60 (v/v), as mobile phase at a flow rate of 1.0 mL min−1. UV detection was performed at 215 nm. Separation of erythromycin F from polar components of the fermentation liquid was sufficient. Erythromycins A, B, C, D, and E, andN-desmethylerythromycin A were also separated, as were known decomposition products of erythromycin A and several unknown components. The method is suitable for monitoring the progress of erythromycin fermentation.  相似文献   

18.
Kinetics of Br anion oxidation by cerium(IV) species in aqueous H2SO4 solutions have been reexamined. The rate of reaction was determined spectrophotometrically based on a factor analysis of the absorbance – time data collected in the wavelength range 318–390 nm – the region characteristic for the cerium(IV) sulphato complexes. The data fit very well to a pseudo-first order dependence under a large molar excess of the reductant. The rate law of the form –d[CeIV]/dt = k[CeIV][Br]2 has been obtained at constant H2SO4 concentration and ionic strength I = 2 m. The pseudo-first order rate constant decreases with an [H2SO4] increase from 0.1 to ca. 0.4 m range, then increases for higher [H2SO4]. The apparent activation parameters have been calculated from the third order rate constants k for different [H2SO4].  相似文献   

19.
The kinetics of the oxidation of promazine and chlorpromazine by hexaimidazolcobalt(III) were studied in the presence of a large excess of cobalt(III) and H+ ions using u.v.–vis. spectroscopy ([CoIII] = (1–6) × 10−3 m, [ptz] = (2.5–10) × 10−5 m, [H+] = 0.05–0.8 m, I = 1.0 m (H+, Na+, Cl), T = 333–353 K, l = 1 cm). In each case, the reversible reaction leads to formation of cobalt(II) species and a stable cationic radical. A linear dependence of the pseudo-first-order rate constant (kobs) on [CoIII] with a non-zero intercept was established for both phenothiazine derivatives. A marked difference in the observed reaction rate for promazine and chlorpromazine is associated with the difference in its ability to undergo oxidation and is consistent with a trend in the redox potential changes for these reductants. The activation parameters for reactions studied were determined. Mechanistic consequences of all the results are discussed.  相似文献   

20.

Abstract  

The enantioseparation conditions of ligand exchange chromatography were examined using ofloxacin enantiomers. A C18 column was used with the mobile phase consisting of a methanol–water solution (containing different concentrations of l-isoleucine and copper sulfate) at flow rate of 0.5 cm3 min−1. The effect of different kinds and concentrations of ligands, bivalent ligand ions, and organic modifier, and temperature on enantioseparation were evaluated; the results showed that enantioselectivity was strongly affected by the ligand concentration of the mobile phase. Under the optimum conditions (methanol/water 20:80 v/v, containing 2.5 mmol dm−3 l-isoleucine and 0.6 mmol dm−3 Cu2+, room temperature), baseline separation of the two enantiomers was obtained with resolution of 1.32 in less than 30 min. The separation method was used to analyze the ofloxacin enantiomers in different commercial medicines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号