首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO) catalyzes the last step in the biosynthesis of the gaseous plant hormone ethylene, which is involved in development, including germination, fruit ripening, and senescence. ACCO is a mononuclear non-heme ferrous enzyme that couples the oxidation of the cosubstrate ascorbate to the oxidation of substrate ACC by dioxygen. In addition to substrate and cosubstrate, ACCO requires the activator CO(2) for continuous turnover. NIR circular dichroism and magnetic circular dichroism spectroscopies have been used to probe the geometric and electronic structure of the ferrous active site in ACCO to obtain molecular-level insight into its catalytic mechanism. Resting ACCO/Fe(II) is coordinatively saturated (six-coordinate). In the presence of CO(2), one ferrous ligand is displaced to yield a five-coordinate site only when both the substrate ACC and cosubstrate ascorbate are bound to the enzyme. The open coordination position allows rapid O(2) activation for the oxidation of both substrates. In the absence of CO(2), ACC binding alone converts the site to five-coordinate, which would react with O(2) in the absence of ascorbate and quickly deactivate the enzyme. These studies show that ACCO employs a general strategy similar to other non-heme iron enzymes in terms of opening iron coordination sites at the appropriate time in the reaction cycle and define the role of CO(2) as stabilizing the six-coordinate ACCO/Fe(II)/ACC complex, thus preventing the uncoupled reaction that inactivates the enzyme.  相似文献   

2.
The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.  相似文献   

3.
The final step in the biosynthesis of the plant signaling molecule ethylene is catalyzed by 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). ACCO requires bicarbonate as an activator and catalyzes the oxidation of ACC to give ethylene, CO2, and HCN. We report crystal structures of ACCO in apo-form (2.1 A resolution) and complexed with Fe(II) (2.55 A) or Co(II) (2.4 A). The active site contains a single Fe(II) ligated by three residues (His177, Asp179, and His234), and it is relatively open compared to those of the 2-oxoglutarate oxygenases. The side chains of Arg175 and Arg244, proposed to be involved in binding bicarbonate, project away from the active site, but conformational changes may allow either or both to enter the active site. The structures will form a basis for future mechanistic and inhibition studies.  相似文献   

4.
W-band (95 GHz) pulsed EPR and electron-nuclear double resonance (ENDOR) spectroscopic techniques were used to determine the hyperfine couplings of different protons of Cu(II)-histidine complexes in frozen solutions. The results were then used to obtain the coordination mode of the tridentate histidine molecule and to serve as a reference for Cu(II)-histidine complexation in other, more complex systems. Cu(II) complexes with L-histidine and DL-histidine-alpha-d,beta-d2 were prepared in H2O and in D2O, and orientation-selective W-band 1H and 2H pulsed ENDOR spectra of these complexes were recorded at 4.5 K. These measurements lead to the unambiguous assignment of the signals of the H alpha, H beta, imidazole H epsilon, and the exchangeable amino, Ham, protons. The 14N superhyperfine splitting observed in the X-band EPR spectrum and the presence of only one type of H alpha and H beta protons in the W-band ENDOR spectra show that the complex is a symmetric bis complex. Its g parallel is along the molecular symmetry axis, perpendicular to the equatorial plane that consists of four coordinated nitrogens in histamine-like coordinations (NNNN). Simulations of orientation-selective ENDOR spectra provided the principal components of the protons' hyperfine interaction and the orientation of their principal axes with respect to g parallel. From the anisotropic part of the hyperfine interaction of H alpha and H beta and applying the point-dipole approximation, a structural model was derived. An unexpectedly large isotropic hyperfine coupling, 10.9 MHz, was found for H alpha. In contrast, H alpha of the Cu(II)-1-methyl-histidine complex where only the amino nitrogen is coordinated, showed a much smaller coupling. Thus, the hyperfine coupling of H alpha can serve as a signature for a histamine coordination where both the amino and imino nitrogens of the same molecule bind to the Cu(II), forming a six-membered chelating ring. Unlike H alpha the hyperfine coupling of H epsilon is not as sensitive to the presence of a coordinated amino nitrogen of the same histidine molecule.  相似文献   

5.
Pulsed 17O Mims electron-nuclear double resonance (ENDOR) spectroscopy at the W band (95 GHz) and D band (130 GHz) is used for the direct determination of the water coordination number (q) of gadolinium-based magnetic resonance imaging (MRI) contrast agents. Spectra of metal complexes in frozen aqueous solutions at approximately physiological concentrations can be obtained either in the presence or absence of protein targets. This method is an improvement over the 1H ENDOR method described previously, which involved the difference ENDOR spectrum of exchangeable protons from spectra taken in H2O and D2O. In addition to exchangeable water protons, the 1H ENDOR method is also sensitive to other exchangeable protons, and it is shown here that this method can overestimate hydration numbers for complexes with exchangeable protons at GdH distances similar to that of the coordinated water, for example, from NH groups. The 17O method does not suffer from this limitation. 17O ENDOR spectroscopy is applied to Gd(III) complexes containing zero, one, or two inner-sphere water molecules. In addition, 13C and 1H ENDOR studies were performed to assess the extent of methanol coordination, since methanol is used to produce a glass in these experiments. Under the experimental conditions used for the hydration number determination (30 mol % methanol), fewer than 15 % of the coordination sites were found to be occupied by methanol.  相似文献   

6.
Several Cu(II) complexes with ACC (=1-aminocyclopropane carboxylic acid) or AIB (=aminoisobutyric acid) were prepared using 2,2'-bipyridine, 1,10-phenanthroline, and 2-picolylamine ligands: [Cu(2,2'-bipyridine)(ACC)(H2O)](ClO4) (1a), [Cu(1,10-phenanthroline)(ACC)](ClO4) (2a), [Cu(2-picolylamine)(ACC)](ClO4) (3a), and [Cu(2,2'-bipyridine)(AIB)(H2O)](ClO4) (1b). All of the complexes were characterized by X-ray diffraction analysis. The Cu(II)-ACC complexes are able to convert the bound ACC moiety into ethylene in the presence of hydrogen peroxide, in an "ACC-oxidase-like" activity. A few equivalents of base are necessary to deprotonate H2O2 for optimum activity. The presence of dioxygen lowers the yield of ACC conversion into ethylene by the copper(II) complexes. During the course of the reaction of Cu(II)-ACC complexes with H2O2, brown species (EPR silent and lambda max approximately 435 nm) were detected and characterized as being the Cu(I)-ACC complexes that are obtained upon reduction of the corresponding Cu(II) complexes by the deprotonated form of hydrogen peroxide. The geometry of the Cu(I) species was optimized by DFT calculations that reveal a change from square-planar to tetrahedral geometry upon reduction of the copper ion, in accordance with the observed nonreversibility of the redox process. In situ prepared Cu(I)-ACC complexes were also reacted with hydrogen peroxide, and a high level of ethylene formation was obtained. We propose Cu(I)-OOH as a possible active species for the conversion of ACC into ethylene, the structure of which was examined by DFT calculation.  相似文献   

7.
Crystallographic studies of the hydrogenases (Hases) from Desulfovibrio gigas (Dg) and Desulfovibrio vulgaris Miyazaki (DvM) have revealed heterodinuclear nickel-iron active centers in both enzymes. The structures, which represent the as-isolated (unready) Ni-A (S = (1)/(2)) enzyme state, disclose a nonprotein ligand (labeled as X) bridging the two metals. The bridging atom was suggested to be an oxygenic (O(2)(-) or OH(-)) species in Dg Hase and an inorganic sulfide in DvM Hase. To determine the nature and chemical characteristics of the Ni-X-Fe bridging ligand in Dg Hase, we have performed 35 GHz CW (17)O ENDOR measurements on the Ni-A form of the enzyme, exchanged into H(2)(17)O, on the active Ni-C (S = (1)/(2)) form prepared by H(2)-reduction of Ni-A in H(2)(17)O, and also on Ni-A formed by reoxidation of Ni-C in H(2)(17)O. In the native state of the protein (Ni-A), the bridging ligand does not exchange with the H(2)(17)O solvent. However, after a reduction/reoxidation cycle (Ni-A --> Ni-C --> Ni-A), an (17)O label is introduced at the active site, as seen by ENDOR. Detailed analysis of a 2-D field-frequency plot of ENDOR spectra taken across the EPR envelope of Ni-A((17)O) shows that the incorporated (17)O has a roughly axial hyperfine tensor, A((17)O) approximately [5, 7, 20] MHz, discloses its orientation relative to the g tensor, and also yields an estimate of the quadrupole tensor. The substantial isotropic component (a(iso)((17)O) approximately 11 MHz) of the hyperfine interaction indicates that a solvent-derived (17)O is indeed a ligand to Ni and thus that the bridging ligand X in the Ni-A state of Dg Hase is indeed an oxygenic (O(2)(-) or OH(-)) species; comparison with earlier EPR results by others indicates that the same holds for Ni-B. The small (57)Fe hyperfine coupling seen previously for Ni-A (A((57)Fe) approximately 0.9 MHz) is now shown to persist in Ni-C, A((57)Fe) approximately 0.8 MHz. However, the (17)O signal is lost upon reductive activation to the Ni-C state; reoxidation to Ni-A leads to the reappearance of the signal. Consideration of the electronic structure of the EPR-active states of the dinuclear center leads us to suggest that the oxygenic bridge in Ni-A(B) is lost in Ni-C and is re-formed from solvent upon reoxidation to Ni-A. This implies that the reductive activation to Ni-C opens Ni/Fe coordination sites which may play a central role in the enzyme's activity.  相似文献   

8.
The lability and structural dynamics of [Fe(II)(edta)(H(2)O)](2-) (edta = ethylenediaminetetraacetate) in aqueous solution strongly depend on solvent interactions. To study the solution structure and water-exchange mechanism, (1)H, (13)C, and (17)O NMR techniques were applied. The water-exchange reaction was studied through the paramagnetic effect of the complex on the relaxation rate of the (17)O nucleus of the bulk water. In addition to variable-temperature experiments, high-pressure NMR techniques were applied to elucidate the intimate nature of the water-exchange mechanism. The water molecule in the seventh coordination site of the edta complex is strongly labilized, as shown by the water-exchange rate constant of (2.7 +/- 0.1) x 106 s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(not equal), DeltaS(not equal), and DeltaV(not equal) were found to be 43.2 +/- 0.5 kJ mol(-1), +23 +/- 2 J K(-1) mol(-1), and +8.6 +/- 0.4 cm(3) mol(-1), respectively, in line with a dissociatively activated interchange (Id) mechanism. The scalar coupling constant (A/h) for the Fe(II)-O interaction was found to be 10.4 MHz, slightly larger than the value A/h = 9.4 MHz for this interaction in the hexa-aqua Fe(II) complex. The solution structure and dynamics of [Fe(II)(edta)(H(2)O)](2-) were clarified by (1)H and (13)C NMR experiments. The complex undergoes a Delta,Lambda-isomerization process with interconversion of in-plane (IP) and out-of-plane (OP) positions. Acetate scrambling was also found in an NMR study of the corresponding NO complex, [Fe(III)(edta)(NO(-))](2-).  相似文献   

9.
The hybrid density functional method B3LYP was used to study the mechanism of the hydrocarbon (methane, ethane, methyl fluoride, and ethylene) oxidation reaction catalyzed by the complexes cis-(H(2)O)(NH(2))Fe(mu-O)(2)(eta(2)-HCOO)(2)Fe(NH(2))(H(2)O), I, and cis-(HCOO)(Imd)Fe(mu-O)(2)(eta(2)-HCOO)(2)Fe(Imd)(HCOO) (Imd = Imidazole), I_m, the "small" and "medium" model of compound Q of the methane monooxygenase (MMO). The improvement of the model from "small" to "medium" did not change the qualitative conclusions but significantly changed the calculated energetics. As in the case of methane oxidation reported by the authors previously, the reaction of all the substrates studied here is shown to start by coordination of the substrate molecule to the bridging oxygen atom, O(1) of I, an Fe(IV)-Fe(IV) complex, followed by the H-atom abstraction at the transition state III leading to the bound hydroxy alkyl intermediate IV of Fe(III)-Fe(IV) core. IV undergoes a very exothermic coupling of alkyl and hydroxy groups to give the alcohol complex VI of Fe(III)-Fe(III) core, from which alcohol dissociates. The H(b)-atom abstraction (or C-H bond activation) barrier at transition state III is found to be a few kcal/mol lower for C(2)H(6) and CH(3)F than for CH(4). The calculated trend in the H(b)-abstraction barrier, CH(4) (21.8 kcal/mol) > CH(3)F (18.8 kcal/mol) > or = C(2)H(6) (18.5 kcal/mol), is consistent with the C-H(b) bond strength in these substrates. Thus, the weaker the C-H(b) bond, the lower is the H(b)-abstraction barrier. It was shown that the replacement of a H-atom in a methane molecule with a more electronegative group tends to make the H(b)-abstraction transition state less "reactant-like". In contrast, the replacement of the H-atom in CH(4) with a less electronegative group makes the H(b)-abstraction transition state more "reactant-like". The epoxidation of ethylene by complex I is found to proceed without barrier and is a highly exothermic process. Thus, in the reaction of ethylene with complex I the only product is expected to be ethylene oxide, which is consistent with the experiment.  相似文献   

10.
A Cu(II)-ACC complex [(Bpy)Cu(ACC)(H2O)]ClO4 (1) was prepared and its treatment with hydrogen peroxide gave rise to ethylene production in an ACC-Oxidase like activity. A brown species that could be a key intermediate in the reaction was detected at low temperature.  相似文献   

11.
The synthesis of efficient water-oxidation catalysts demands insight into the only known, naturally occurring water-oxidation catalyst, the oxygen-evolving complex (OEC) of photosystem II (PSII). Understanding the water oxidation mechanism requires knowledge of where and when substrate water binds to the OEC. Mn catalase in its Mn(III)-Mn(IV) state is a protein model of the OEC's S(2) state. From (17)O-labeled water exchanged into the di-μ-oxo di-Mn(III,IV) coordination sphere of Mn catalase, CW Q-band ENDOR spectroscopy revealed two distinctly different (17)O signals incorporated in distinctly different time regimes. First, a signal appearing after 2 h of (17)O exchange was detected with a 13.0 MHz hyperfine coupling. From similarity in the time scale of isotope incorporation and in the (17)O μ-oxo hyperfine coupling of the di-μ-oxo di-Mn(III,IV) bipyridine model (Usov, O. M.; Grigoryants, V. M.; Tagore, R.; Brudvig, G. W.; Scholes, C. P. J. Am. Chem. Soc. 2007, 129, 11886-11887), this signal was assigned to μ-oxo oxygen. EPR line broadening was obvious from this (17)O μ-oxo species. Earlier exchange proceeded on the minute or faster time scale into a non-μ-oxo position, from which (17)O ENDOR showed a smaller 3.8 MHz hyperfine coupling and possible quadrupole splittings, indicating a terminal water of Mn(III). Exchangeable proton/deuteron hyperfine couplings, consistent with terminal water ligation to Mn(III), also appeared. Q-band CW ENDOR from the S(2) state of the OEC was obtained following multihour (17)O exchange, which showed a (17)O hyperfine signal with a 11 MHz hyperfine coupling, tentatively assigned as μ-oxo-(17)O by resemblance to the μ-oxo signals from Mn catalase and the di-μ-oxo di-Mn(III,IV) bipyridine model.  相似文献   

12.
The synthesis and characterization of two new iron(II) complexes, [Fe(pca)2(py)2].py (1) and {[Fe(pca)2(H2O)].H2O}n (2) and one new iron(III) complex, Na2{[Fe(pca)()]2O}.2H2O.2CH3CN (3) (pca- stands for 2-pyrazinecarboxylate), are reported. Complex 1 is obtained from the reaction of iron powder with 2-pyrazinecarboxylic acid. The reaction of Fe(ClO4)3.10H2O with Hpca in the presence of 3 equiv. of Bu4NOH yields 2, whereas the presence of NaOH yields 3. The molecular structure of 1 contains an iron(II) ion with a pseudo-octahedral environment resulting from the coordination of two pca- ligands in a bidentate chelating fashion and two pyridine molecules; pi-pi stacking interactions between pyridine and pyrazine rings lead to a one-dimensional chain. Complex 2 is an iron(II) coordination polymer with an infinite zig-zag motif and an Fe...Fe separation of 7.1 A. In 2, the pi-pi stacking interactions involving the pyrazine rings and the strong hydrogen bonds between the coordinated water molecule and the carboxylate oxygens of two pca- ligands result in a three-dimensional network structure. Complex 3 consists of an anionic micro-oxo-bridged diiron(III) core with two crystallographically distinct iron(iii) ions; the negative charge is compensated by two sodium cations. Complex 3 is assembled in a three dimensional network structure through coordination of Na(I) and hydrogen bond interactions. Temperature dependent magnetic susceptibility and M?ssbauer spectroscopic studies indicate that 1 and 2 have similar magnetic properties. Both complexes are paramagnetic above 12 K, whereas antiferromagnetic ordering is observed below 12 K. The magnetic properties of reveal strong intramolecular antiferromagnetic interactions between the two iron(III) ions with a J value of -221 cm(-1); no long range intermolecular magnetic coupling is observed between 295 and 4.2 K.  相似文献   

13.
The promising BioDeNO(x) process for NO removal from gaseous effluents suffers from an unsolved problem that results from the oxygen sensitivity of the Fe(II)-aminopolycarboxylate complexes used in the absorber unit to bind NO(g). The utilized [Fe(II)(EDTA)(H2O)](2-) complex is extremely oxygen sensitive and easily oxidized to give a totally inactive [Fe(III)(EDTA)(H2O)](-) species toward the binding of NO(g). We found that an in situ formed, less-oxygen-sensitive mixed-ligand complex, [Fe(II)(EDTA)(F)](3-), still reacts quantitatively with NO(g). The formation constant for the mixed ligand complex was determined spectrophotometrically. For [Fe(III)(EDTA)(F)](2-) we found log K(MLF)(F) = 1.7 +/- 0.1. The [Fe(II)(EDTA)(F)](3-) complex has a smaller value of log K(MLF)(F) = 1.3 +/- 0.2. The presence of fluoride does not affect the reversible binding of NO(g). Even over extended periods of time and fluoride concentrations of up to 1.0 M, the nitrosyl complex does not undergo any significant decomposition. The [Fe(III)(EDTA)(NO(-))](2-) complex releases bound NO on passing nitrogen through the solution to form [Fe(II)(EDTA)(H2O)](2-) almost completely. A reaction cycle is feasible in which fluoride inhibits the autoxidation of [Fe(II)(EDTA)(H2O)](2-) during the reversible binding of NO(g).  相似文献   

14.
Electronic absorption and resonance Raman (RR) spectra are reported for hydroxide and aqua complexes of iron(II)-protoporphyrin IX (Fe(II)PP) respectively formed in alkaline and neutral aqueous solutions. These compounds with weak axial ligand(s) represent a biomimetic approach of the unusual coordination of the atypical heme c(i) of membrane cytochrome b6f complexes. Absorption spectra and spectrophotometric titrations show that Fe(II)PP in alkaline aqueous cetyltrimethylammonium bromide (CTABr) binds one hydroxide ion, forming a five-coordinated high-spin (HS) complex. In alkaline aqueous ethanol, we confirm the formation of a dihydroxy complex of Fe(II)PP. In the RR spectra of Fe(II)PP dissolved in neutral aqueous CTABr, a mixture of a four-coordinated intermediate spin form with an HS monoaqua complex (Fe(II)PP(H2O)) was observed. The spectroscopic information obtained for Fe(II)PP(OH-), Fe(II)PP(H2O), and Fe(II)PP(OH-)2 was compared with that previously reported for the 2-methylimidazole and 2-methylimidazolate complexes of Fe(II)PP, representative of the most common axial ligation in HS heme proteins. This investigation reveals a very remarkable analogy in the spectral properties of, in one hand, the Fe(II)PP(H2O) and mono-2-methylimidazole complexes and, in the other hand, the Fe(II)PP(OH-) and mono-2-methylimidazolate complexes. The comparisons of the absorption and RR spectra of Fe(II)PP(OH-) and Fe(II)PP(OH-)2 clearly establish that both a redshift of the pi-pi electronic transitions and an upshift of the v8 RR frequency are spectral parameters indicative of porphyrin doming in HS ferrous complexes. Based upon isotopic substitutions (16OH-,16OD-, and 18OH-), stretching modes of the Fe-OH bond(s) of a ferrous porphyrin were assigned for the first time, i.e., at 435 cm(-1) for Fe(II)PP(OH-) (nu(Fe(II)-OH-)) and at 421 cm(-1) for Fe(II)PP(OH-)2 (nu(s)(Fe(II)-(OH-)2). The spectroscopic and redox properties of Fe(II)PP(H2O), Fe(II)PP(OH-), and heme c(i) were discussed and favor a water coordination for the heme c(i) iron.  相似文献   

15.
An investigation into the species formed in the first step of the solvent free homogeneous Michael reaction of alpha,beta-unsaturated ketones with 2-oxocyclopentanecarboxylate (1) is presented. This reaction is catalyzed by FeCl(3).6H(2)O (2) and Fe(ClO(4))(3).9H(2)O (3). EXAFS, XANES, Raman and UV-Vis studies were carried out to explain the experimentally found higher catalytic activity of Fe(ClO(4))(3).9H(2)O (3) compared to FeCl(3).6H(2)O (2). A very intense pre-edge peak is found for a 1.6 mol% solution of FeCl(3).6H(2)O (2) in 1, suggesting a tetrachloroferrate(III) compound to be present in this solution. This is proved by UV-Vis and Raman spectroscopy. The counterion of this anionic complex is an octahedral [Fe(III)(1-H)(2)(H2O2)](+) complex with two deprotonated 2-oxocyclopentanecarboxylate (1) as the chelating ligand, (1-H)(-), as suggested by the examination of the XANES region, the obtained coordination numbers from the EXAFS analysis and by UV-Vis and Raman spectroscopies. In summary, the anion-cation species [Fe(III)Cl(4)](-)[Fe(III)(-H)(2)(H2O2)](+) is formed with FeCl(3).6H(2)O (2), whereas in the case of Fe(ClO(4))(3).9H(2)O (3) XAFS, Raman and UV-Vis investigations suggest the presence of a complex of the form [Fe(III)(1-H)(2)(H2O2)](+)[ClO(4)](-). The obtained results are discussed to explain the reduced catalytic activity of FeCl(3).6H(2)O (2) in comparison to Fe(ClO(4))(3).9H(2)O (3).  相似文献   

16.
Two new cyano-bridged one-dimensional heterobimetallic coordination polymers, [(bpca)(2)Fe(III)(2)(CN)(6)Cu(H(2)O)(2).1.5H(2)O](n)() (2) and [(bpca)Fe(III)(CN)(3)Cu(bpca)(H(2)O).H(2)O](n)() (3), and a trinuclear complex, [(bpca)(2)Fe(III)(2)(CN)(6)Mn(CH(3)OH)(2)(H(2)O)(2)].2H(2)O (4), have been synthesized using the tailored tricyanometalate precursor (Bu(4)N)[Fe(bpca)(CN)(3)].H(2)O (1) (Bu(4)N(+) = tetrabutylammonium cation; bpca = bis(2-pyridylcarbonyl)amidate anion) as a building block and structurally characterized. In complex 2, the Cu(II) ions are six-coordinated in an elongated distorted octahedral environment, and they are linked by distorted octahedrons of [Fe(bpca)(CN)(3)](-) to form 1D chain of squares. Complex 3 is an unexpected chiral heterobimetallic helical chain complex, in which the helical chain consists of the asymmetric unit of [(bpca)Fe(CN)(3)Cu(bpca)(H(2)O)]. In complex 4, there are two independent trinuclear clusters in one asymmetric unit, and the coordination modes of the two methanol and two water molecules coordinating to the central Mn(II) ion are different (cis and trans). Complex 2 shows metamagnetic behavior with a Neel temperature of T(N) = 2.2 K and a critical field of 250 Oe at 1.8 K, where the cyanides mediate the intrachain ferromagnetic coupling between the Cu(II) and Fe(III) ions. Complex 3 shows ferromagnetic coupling between Cu(II) and Fe(III) ions, the best-fit for chi(M)T versus T using a 1D alternating chain model leads to the parameters J(1) = 7.9(3) cm(-)(1), J(2) = 1.03(2) cm(-)(1), and g = 2.196(3). Complex 4 exhibits ferrimagnetic behavior caused by the noncompensation of the local interacting spins (S(Mn) = 5/2 and S(Fe) = 1/2) which interact antiferromagnetically through bridging cyano groups.  相似文献   

17.
Continuous Wave (CW), pulse Electron Paramagnetic Resonance (EPR) and pulse Electron Nuclear Double Resonance (ENDOR) spectroscopies, in conjunction with UV-Vis and Infrared (IR) spectroscopies, are used to investigate the chemical reactivity of tetrahedrally coordinated Ti(3+) ions isomorphously substituted in the framework of AlPO-5 towards NH(3) and O(2). The coordination of ammonia to Ti(3+) centres is followed in detail by complementary vibrational and electron magnetic resonance techniques. In particular HYSCORE spectra allow identifying the coordination of two ammonia molecules to Ti(3+) centres resolving the full hyperfine and quadrupole (14)N coupling tensors. The reactivity of the reduced TiAlPO sample towards molecular oxygen is detailed by means of CW-EPR and pulse ENDOR spectroscopy. (17)O(2) is employed, allowing to establish the formation of a "side-on" η(2) O(2)(-)-Ti(4+) electrostatic complex. Pulse ENDOR spectra provide detailed information on the local environment of the formed superoxide radical anion which acts as a paramagnetic probe, providing evidence for Ti-O-Ti oligomeric species.  相似文献   

18.
Dehaloperoxidase (DHP) from Amphitrite ornata is a heme protein that can function both as a hemoglobin and as a peroxidase. This report describes the use of 77 K cryoreduction EPR/ENDOR techniques to study both functions of DHP. Cryoreduced oxyferrous [Fe(II)-O(2)] DHP exhibits two EPR signals characteristic of a peroxoferric [Fe(III)-O(2)(2-)] heme species, reflecting the presence of conformational substates in the oxyferrous precursor. (1)H ENDOR spectroscopy of the cryogenerated substates shows that H-bonding interactions between His N(ε)H and heme-bound O(2) in these conformers are similar to those in the β-chain of oxyferrous hemoglobin A (HbA) and oxyferrous myoglobin, respectively. Decay of cryogenerated peroxoferric heme DHP intermediates upon annealing at temperatures above 180 K is accompanied by the appearance of a new paramagnetic species with an axial EPR signal with g(⊥) = 3.75 and g(∥) = 1.96, characteristic of an S = 3/2 spin state. This species is assigned to Compound I (Cpd I), in which a porphyrin π-cation radical is ferromagnetically coupled with an S = 1 ferryl [Fe(IV)═O] ion. This species was also trapped by rapid freeze-quench of the ambient-temperature reaction mixture of ferric [Fe(III)] DHP and H(2)O(2). However, in the latter case Cpd I is reduced very rapidly by a nearby tyrosine to form Cpd ES [(Fe(IV)═O)(porphyrin)/Tyr(?)]. Addition of the substrate analogue 2,4,6-trifluorophenol (F(3)PhOH) suppresses formation of the Cpd I intermediate during annealing of cryoreduced oxyferrous DHP at 190 K but has no effect on the spectroscopic properties of the remaining cryoreduced oxyferrous DHP intermediates and kinetics of their decay. These observations indicate that substrate (i) binds to oxyferrous DHP outside of the distal pocket and (ii) can reduce Cpd I to Cpd II [Fe(IV)═O]. These assumptions are also supported by the observation that F(3)PhOH has only a small effect on the EPR properties of radiolytically cryooxidized and cryoreduced ferrous [Fe(II)] DHP. EPR spectra of cryoreduced ferrous DHP disclose the multiconformational nature of the ferrous DHP precursor. The observation and characterization of Cpds I, II, and ES in the absence and in the presence of F(3)PhOH provides definitive evidence of a mechanism involving consecutive one-electron steps and clarifies the role of all intermediates formed during turnover.  相似文献   

19.
Reported here is the preparation and property of 2D coordination networks composed of rodlike ligands with ethylene glycol side chains (1). Two 2D coordination networks, [[Co(1)2(H2O)2](NO3)2.1.5H2O]n and [[Ni(1)2(H(2)O)2](NO3)2.1.5H2O]n, have been synthesized and characterized by single-crystal X-ray diffraction, TG, DSC, UV-vis spectroscopy, and magnetic measurements. The structural analyses clarified that infinite 1D hydrogen-bond arrays composed of ethylene glycol chains contribute to the stabilization of 2D coordination frameworks, keeping the environment of substitution-active metal sites unchanged. They are more stable than a similar square-grid coordination network that does not possess an ethylene glycol chain on the ligand. We also succeeded in the direct observation of a reversible apical-ligand-exchange reaction at the cobalt(II) and nickel(II) ions in a single-crystal-to-single-crystal fashion because of the considerable stability as well as moderate flexibility of the framework. The cobalt-containing coordination network crystal showed chromic behavior depending on temperatures. Crystallographic and spectroscopic studies revealed that the color change of the crystal was attributed to the ligand-exchange process between H2O and a NO3 anion on the cobalt metal. Magnetic measurements indicated weak antiferromagnetic nearest-neighbor spin coupling between cobalt(II) ions.  相似文献   

20.
The addition of pyridine-2-carbaldehyde 4N-methylthiosemicarbazone (C8H10N4S) to an aqueous solution of copper(II) nitrate yields [[Cu(C8H9N4S)(NO3)]2] (1). This complex consists of centrosymmetric dinuclear entities containing square-pyramidal copper(II) ions bridged through the sulfur thioamide atoms. The oxidation of 1 with KBrO3 or KIO3 gives rise to a compound with formula [[Cu(C8H8N4O)(H2O)2(SO4)]2]*2H2O (2) (C8H8N4O = 2-methylamino-5-pyridin-2-yl-1,3,4-oxadiazole). The structure of 2 is made up of centrosymmetric dimers where the copper(II) ions exhibit a distorted octahedral coordination and are connected by the oxadiazole moiety. The metal ions in 2 can be removed by addition of K4[Fe(CN)6], and then the oxadiazole ligand can be isolated and recrystallized as (C8H8N4O)*3H2O (3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号