首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article gives exact solutions to a finite-difference model of a nonlinear reaction-advection equation. We show that this partial difference equation and the corresponding stationary and spatially independent difference equations derived from this model give the best representation of the original partial differential equation. The relevance of this work to the elimination of chaotic behavior in numerical solutions of differential equations is discussed.  相似文献   

2.

This article gives exact solutions to a finite-difference model of a nonlinear reaction-advection equation. We show that this partial difference equation and the corresponding stationary and spatially independent difference equations derived from this model give the best representation of the original partial differential equation. The relevance of this work to the elimination of chaotic behavior in numerical solutions of differential equations is discussed.  相似文献   

3.
4.
Huiqun Zhang 《Acta Appl Math》2009,106(2):241-249
Sub-equation methods are used for constructing exact travelling wave solutions of nonlinear partial differential equations. The key idea of these methods is to take full advantage of all kinds of special solutions of sub-equation, which is usually a nonlinear ordinary differential equation. We present a function transformation which not only gives us a clear relation among these sub-equation methods, but also can be used to obtain the general solutions of these sub-equations. And then new exact travelling wave solutions of the CKdV-MKdV equation and the CKdV equations as applications of this transformation are obtained, and the approach presented in this paper can be also applied to other nonlinear partial differential equations.   相似文献   

5.
1.IntroductionCentraltothetheoryoftype-IIsuperconductorsisAbrikosov'schaxacterizationofthemixedstateasalattice-likearrangementofquantizedfluxlines,oryorticesofsuperconductingelectronpairs.TheAbrikosov'svortexlattice,whichhasalsobeenobservedinexperiments,isthesolutionsoftheGinzburgLandau(GL)equationswithatypeofspatialperiodicity.Recentlytherehavebeenseveralauthor8studiedthegaugeperiodicsolutionsoftheGLsuperconductivitymodelfromdifferentpointof.iews[1'1o)11'17].Roughlyspeaxing,gaugeperiodics…  相似文献   

6.
An analysis is presented for the steady boundary layer flow and heat transfer of a viscous and incompressible fluid in the stagnation point towards a non-linearly moving flat plate in a parallel free stream with a partial slip velocity. The governing partial differential equations are converted into nonlinear ordinary differential equations by a similarity transformation, which are then solved numerically using the function bvp4c from Matlab for different values of the governing parameters. Dual (upper and lower branch) solutions are found to exist for certain parameters. Particular attention is given to deriving numerical results for the critical/turning points which determine the range of existence of the dual solutions. A stability analysis has been also performed to show that the upper branch solutions are stable and physically realizable, while the lower branch solutions are not stable and, therefore, not physically possible.  相似文献   

7.
We prove the nonexistence of solutions for some nonlinear ordinary differential equations and inequalities, for quasilinear partial differential equations and inequalities in bounded domains with singular points on the boundary, and for systems of such equations and inequalities. The proofs are based on the method of nonlinear capacity. We also give examples demonstrating that the conditions obtained are sharp in the class of problems under consideration.  相似文献   

8.
The generalized sub-ODEmethod, the rational (G' ⁄ G)-expansionmethod, the exp-function method and the sine-cosine method are applied for constructing many traveling wave solutions of nonlinear partial differential equations (PDEs). Some illustrative equations are investigated by these methods and many hyperbolic, trigonometric and rational function solutions are found. We apply these methods to obtain the exact solutions for the generalized KdV-mKdV (GKdV-mKdV) equation with higher-order nonlinear terms. The obtained results confirm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear partial differential equations in mathematical physics. We compare between the results yielding from these methods. Also, a comparison between our new results in this paper and the well-known results are given.  相似文献   

9.
Fairly rigorous mathematical laws are applied to construct a mathematical model of a self-developing market economy with movement of time-dependent capital in the technology space. The model is a system of nonlinear partial differential equations. We analyze the bifurcations of the spatially homogeneous solutions that describe the dynamics of macro-variables of the economic system. We also study some properties of the solutions of the partial differential equations that follow from diffusion of capital and consumer demand.Translated from Nelineinaya Dinamika i Upravlenie, No. 2, pp. 243–262, 2002.  相似文献   

10.
We consider the local dynamics of the classical Kuramoto–Sivashinsky equation and its generalizations and study the problem of the existence and asymptotic behavior of periodic solutions and tori. The most interesting results are obtained in the so-called infinite-dimensional critical cases. Considering these cases, we construct special nonlinear partial differential equations that play the role of normal forms and whose nonlocal dynamics thus determine the behavior of solutions of the original boundary value problem.  相似文献   

11.
In this paper, we elaborated a spectral collocation method based on differentiated Chebyshev polynomials to obtain numerical solutions for some different kinds of nonlinear partial differential equations. The problem is reduced to a system of ordinary differential equations that are solved by Runge–Kutta method of order four. Numerical results for the nonlinear evolution equations such as 1D Burgers’, KdV–Burgers’, coupled Burgers’, 2D Burgers’ and system of 2D Burgers’ equations are obtained. The numerical results are found to be in good agreement with the exact solutions. Numerical computations for a wide range of values of Reynolds’ number, show that the present method offers better accuracy in comparison with other previous methods. Moreover the method can be applied to a wide class of nonlinear partial differential equations.  相似文献   

12.
Using the solutions of an auxiliary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some Wick-type nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained. In addition, the links between Wick-type partial differential equations and variable coefficient partial differential equations are also clarified generally.  相似文献   

13.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

14.
1 引  言三维热传导型半导体器件瞬态问题的数学模型由四个非线性偏微分方程描述[1 ,2 ] ,记 Ω为 Ω=[0 ,1 ] 3的边界 ,三维问题-Δψ =α( p -e+ N( x) ) ,   ( x,t)∈Ω× [0 ,T] ,( 1 .1 ) e t= . ( De( x) e-μe( x) e ψ) -R( e,p,T) ,  ( x,t)∈Ω× ( 0 ,T] ,( 1 .2 ) p t= . ( Dp( x) p +μp( x) p ψ) -R( e,p,T) ,  ( x,t)∈Ω× ( 0 ,T] ,( 1 .3 )ρ( x) T t-ΔT =[( Dp( x) p +μp( x) p ψ) -( De( x) e-μe( x) e ψ) ] . ψ,       ( x,t)∈Ω× ( 0 ,T] . ( 1 .4 )ψ( x,t) =e( x,t) =p( …  相似文献   

15.
We find conditions for the bifurcation of periodic spatially homogeneous and spatially inhomogeneous solutions of a three-dimensional system of nonlinear partial differential equations describing a soil aggregate model. We show that the transition to diffusion chaos in this model occurs via a subharmonic cascade of bifurcations of stable limit cycles in accordance with the universal Feigenbaum–Sharkovskii–Magnitskii bifurcation theory.  相似文献   

16.
By means of computerized symbolic computation and a modified extended tanh-function method the multiple travelling wave solutions of nonlinear partial differential equations is presented and implemented in a computer algebraic system. Applying this method, we consider some of nonlinear partial differential equations of special interest in nanobiosciences and biophysics namely, the transmission line models of microtubules for nano-ionic currents. The nonlinear equations elaborated here are quite original and first proposed in the context of important nanosciences problems related with cell signaling. It could be even of basic importance for explanation of cognitive processes in neurons. As results, we can successfully recover the previously known solitary wave solutions that had been found by other sophisticated methods. The method is straightforward and concise, and it can also be applied to other nonlinear equations in physics.  相似文献   

17.
This paper is concerned with the construction of conservative finite difference schemes by means of discrete variational method for the generalized Zakharov–Kuznetsov equations and the numerical solvability of the two-dimensional nonlinear wave equations. A finite difference scheme is proposed such that mass and energy conservation laws associated with the generalized Zakharov–Kuznetsov equations hold. Our arguments are based on the procedure that D. Furihata has recently developed for real-valued nonlinear partial differential equations. Numerical results are given to confirm the accuracy as well as validity of the numerical solutions and then exhibit remarkable nonlinear phenomena of the interaction and behavior of pulse wave solutions.  相似文献   

18.
We study the blowing-up behavior of solutions of a class of nonlinear integral equations of Volterra type that is connected with parabolic partial differential equations with concentrated nonlinearities. We present some analytic results and, in the case of the kernel of Abel-kind with power nonlinearity and fixed initial data, we give a numerical approximation by using one-point collocation methods.  相似文献   

19.
In this study, both the dual reciprocity boundary element method and the differential quadrature method are used to discretize spatially, initial and boundary value problems defined by single and system of nonlinear reaction–diffusion equations. The aim is to compare boundary only and a domain discretization method in terms of accuracy of solutions and computational cost. As the time integration scheme, the finite element method is used achieving solution in terms of time block with considerably large time steps. The comparison between the dual reciprocity boundary element method and the differential quadrature method solutions are made on some test problems. The results show that both methods achieve almost the same accuracy when they are combined with finite element method time discretization. However, as a method providing very good accuracy with considerably small number of grid points differential quadrature method is preferrable.  相似文献   

20.
In this article, an efficient hybrid method has been developed for solving some special type of nonlinear partial differential equations. Hybrid method is based on tanh–coth method, quasilinearization technique and Haar wavelet method. Nonlinear partial differential equations have been converted into a nonlinear ordinary differential equation by choosing some suitable variable transformations. Quasilinearization technique is used to linearize the nonlinear ordinary differential equation and then the Haar wavelet method is applied to linearized ordinary differential equation. A tanh–coth method has been used to obtain the exact solutions of nonlinear ordinary differential equations. It is easier to handle nonlinear ordinary differential equations in comparison to nonlinear partial differential equations. A distinct feature of the proposed method is their simple applicability in a variety of two‐ and three‐dimensional nonlinear partial differential equations. Numerical examples show better accuracy of the proposed method as compared with the methods described in past. Error analysis and stability of the proposed method have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号