首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Carbon fabric (CF)/phenolic laminates filled with pristine and chromic acid treated ultra high molecular weight polyethylene (UHMWPE) microparticles were fabricated. Their interfacial and tribological properties in water environment were comparatively investigated. The interlaminar shear strength (ILSS) of the laminates was tested on a universal testing machine (DY35), and the tribological properties were evaluated by a block‐on‐ring tribo‐tester. The worn surfaces and the interfaces of the laminates were respectively analyzed by scanning electron microscope (SEM) and field emission SEM (FESEM). The change of the chemical composition of UHMWPE microparticles after chromic acid etching was analyzed by Fourier transform infrared spectroscopy (FTIR). The chemical state of carbon fiber surface was examined using X‐ray photoelectron spectroscopy (XPS). The results revealed that the chromic acid treated UHMWPE microparticles had more remarkable effect than the pristine ones on improving not only ILSS and wear resistance of CF/phenolic laminate, but also its immunity to water environment. This should be attributed to the strengthened interfaces in treated UHMWPE/CF/phenolic laminate, which were characterized by the drawn dendritic UHMWPE fibrils firmly clinging on the surfaces of carbon fibers and resin in a Boston ivy‐like manner. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

3.
Glass beads were etched with acids and bases to increase the surface porosity and the number of silanol groups that could be used for grafting materials to the surfaces. The pretreated glass beads were functionalized using 3‐aminopropyltriethoxysilane (APS) coupling agent and then further chemically modified by reacting the carboxyl groups of carboxylic acid polymers with the amino groups of the pregrafted APS. Several carboxylic acid polymers and poly(maleic anhydride) copolymers, such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), poly(styrene‐alt‐maleic anhydride) (PSMA), and poly(ethylene‐alt‐maleic anhydride) (PEMA) were grafted onto the bead surface. The chemical modifications were investigated and characterized by FT‐IR spectroscopy, particle size analysis, and tensiometry for contact angle and porosity changes. The amount of APS and the different polymer grafted on the surface was determined from thermal gravimetric analysis and elemental analysis data. Spectroscopic studies and elemental analysis data showed that carboxylic acid polymers and maleic anhydride copolymers were chemically attached to the glass bead surface. The improved surface properties of surface modified glass beads were determined by measuring water and hexane penetration rates and contact angle. Contact angles increased and porosity decreased as the molecular weights of the polymer increased. The contact angles increased with the hydrophobicity of the attached polymer. The surface morphology was examined by scanning electron microscopy (SEM) and showed an increase in roughness for etched glass beads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
《先进技术聚合物》2018,29(2):843-851
The mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers reinforced rigid polyurethane (PU) composites were studied, and the effects of the fiber surface treatment and the mass fraction were discussed. Chromic acid was used to treat the UHMWPE fibers, and polyurethane composites were prepared with 0.1 to 0.6 wt% as‐received and treated UHMWPE fibers. Attenuated total reflection Fourier transform infrared demonstrated that oxygen‐containing functional groups were efficiently grafted to the fiber surface. The mechanical performance tests of the UHMWPE fibers/PU composites were conducted, and the results revealed that the treated UHMWPE fibers/PU composites had better tensile, compression, and bending properties than as‐received UHMWPE fibers/PU composites. Thermal gravimetric analyzer showed that the thermal stability of the treated fiber composites were improved. The interface bonding of PU composites were investigated by scanning electron microscopy and dynamic mechanical analysis, and the results indicated that the surface modification of UHMWPE fiber could improve the interaction between fiber and PU, which played a positive role in mechanical properties of composites.  相似文献   

5.
采用直接氟化处理新技术对板材进行了表面处理,明显增强其可粘性,与环氧黏合剂粘接的剪切强度可达4.72 MPa,且氟化处理后样品在室温环境放置1个月后,与环氧粘接的剪切强度基本保持不变.扫描电镜结果显示,氟化后UHMWPE板材表面形貌结构并未发生明显变化.接触角测试发现氟化后UHMWPE表面极性部分明显增加,表面能由30...  相似文献   

6.
利用微流控芯片进行生物医学检测,往往需要对芯片通道进行表面修饰,连接上某些特异性的活性分子。本研究对一种新型的环氧树脂材料表面进行空气等离子体前处理,然后进行丙烯酸(acrylic acid, AAc)紫外诱导接枝聚合,使这种环氧树脂材料表面引入了羧基基团.在此基础上,将这种化学惰性的环氧树脂表面连接上特异的抗体,作为微流控芯片的基底,进行免疫检测实验。用静态接触角、甲苯胺兰染色、X射线光电子能谱分析(XPS)、BCA蛋白定量检测和细胞黏附实验等检测手段对环氧树脂的表面修饰进行了表征。结果表明,使用空气等离子体处理后丙烯酸紫外诱导接枝聚合的方法成功地在环氧树脂表面引入了大量的羧基基团;使用EDC/NHS偶联试剂,将蛋白以共价连接的方式连接到疏水的、化学惰性的环氧树脂表面;通过细胞黏附实验表明,用这种方法修饰的环氧树脂表面可以用作生物医学的免疫检测实验。  相似文献   

7.
采用层层自组装技术与光化学修饰方法相结合在聚氨酯材料表面固定生物多糖衍生物,首先合成具有光反应活性的叠氮壳聚糖,再在聚氨酯基材表面进行叠氮壳聚糖与香菇多糖硫酸酯的层层自组装,然后通过光化学反应对自组装多层膜修饰层进行交联,制备得到生物多糖衍生物层层自组装与光化学表面修饰的聚氨酯材料.通过红外光谱、X射线光电子能谱、水接触角测量仪、抗菌活性测试、溶血试验和血小板黏附测试等方法对被修饰聚氨酯材料的表面性能和生物性能进行了分析,测试结果表明修饰后的聚氨酯材料表面的亲水性和血液相容性得到改善,并且被修饰材料对大肠杆菌具有良好的抑制效果.  相似文献   

8.
Aragonite whiskers (AWs) were treated with several fatty acid surfactants and silane coupling agent in order to determine the optimal modifier by using contact angle measurements. The results revealed that the AWs modified by fatty acids showed more remarkable increase in the contact angle than by silane, suggesting the former were preferentially applied in modifying AWs. While the samples coated with fatty acids exhibited hydrophobicity with contact angles ranging from 104.08° to 137.87° with increasing of carbon chain length. Therefore, the highest contact angle of AWs treated by oleic acid was discussed in detail as an example, which was characterized by field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), thermo‐gravimetry analyses (TGA), X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR). FESEM and TEM results showed a thin layer coated on the modified sample surface. Both the results of TGA and XPS confirmed organic groups existed in the sample of AWs treated by oleic acid. FTIR demonstrated that calcium dioleate was formed in the modification process. Further, modification mechanism was proposed based on the obtained results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A novel material for hard tissue implants has been prepared. The ultra-high molecular weight polyethylene (UHMWPE) was grafted with collagen I, to improve its biocompatibility with soft tissue in case of its usage in bone engineering. Before collagen immobilization, commercial grade UHMWPE was treated with air plasma to introduce hydroperoxides onto the surface and subsequently grafted with carboxylic acid to functionalize the surface. Acrylic acid and itaconic acid were used for surface functionalization. After graft polymerization of carboxylic acids, collagen was immobilized covalently through the amide bonds between residual amino and carboxyl groups in the presence of water-soluble carbodiimide/hydroxysuccinimide cross-linking system. Each step of modification was characterized using spectroscopic (EPR, ATR-FTIR, and XPS), microscopic (SEM and CLSM), and contact angle measurement methods. The experimental results showed that plasma treatment led to a generation of free radicals on the UHMWPE surface resulting in the formation of unstable hydroperoxides. These reactive species were used to graft unsaturated carboxylic acids onto UHMWPE. Consequently, collagen was grafted via the-NH2 and-COOH reaction. The obtained experimental data along with microscopic observations confirmed the success of graft poly-merization of itaconic as well as of acrylic acid and collagen immobilization onto the UHMWPE surface. Presented at the 1st Bratislava Young Polymer Scientists Workshop, Bratislava, 20–23 August, 2007.  相似文献   

10.
赵晗  尚晴  杨萌  金帅  王洋洋  赵宁  尹晓品  丁彩玲  徐坚 《高分子学报》2020,(3):287-294,I0003
应用Cat-TEPA改性超高分子量聚乙烯(UHMWPE)纤维,在难黏附的纤维表面形成均匀涂层.采用透射电子显微镜(TEM)、红外光谱(FTIR)、X射线光电子能谱(XPS)、X射线衍射(XRD)、示差扫描量热(DSC)、热重分析(TGA)和静态接触角测试等手段对其结构和性能进行了表征,并通过单丝拔出实验研究改性前后纤维与环氧树脂之间的界面剪切强度(IFSS),探索了反应物配比、反应时间对表面性能的影响,并确定最佳改性条件.结果表明Cat-TEPA共沉积改性未影响纤维的结晶和热稳定性,改性后纤维表面浸润性得到改善,且适当增加反应时间和TEPA含量能够提高纤维和树脂之间的IFSS,当Cat-TEPA摩尔比为1:4,反应时间为24 h时效果最佳,与未改性纤维相比,界面剪切强度提升约44%.  相似文献   

11.
利用表面引发原子转移自由基聚合(SI-ATRP)在聚对苯二甲酸乙二醇酯(PET)薄膜表面接枝苯乙烯和4-氟苯乙烯的共聚物.研究不同反应时间和不同配比下接枝共聚物对聚酯薄膜表面组成、结构和性能的影响.通过傅利叶变换红外光谱仪(ATR/FTIR),X-射线光电子能谱仪(XPS),凝胶渗透色谱(GPC)和扫描电子显微镜(SEM)对接枝改性前后PET薄膜的表面组成,结构和形貌进行分析;利用接触角测试和表面能计算对比研究接枝改性前后PET薄膜的表面性能.结果表明反应时间和单体百分含量对接枝百分率及接触角有一定的影响,随着反应时间的增长,聚酯薄膜表面接枝百分率增大,接触角增加,表面自由能下降.  相似文献   

12.
Photolysis of perfluoroazooctane with diamond films led the chemical modification of the surface to introduce perfluorooctyl functional groups, confirmed by means of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry measurements. Diamond films modified with fluorine moieties showed improved frictional property and reduction of surface energy, as evaluated by contact angle to water, compared with a pristine diamond film. The contact angle and friction coefficient of chemically modified diamond film are 118 degrees and 0.1, respectively. The results of the value of the contact angle depending on irradiation times are consistent with those of the F/C ratio of fluorinated diamond films by monitoring with XPS.  相似文献   

13.
The influence of Ar/O2 plasma activation and chromic acid etching of polycarbonate (PC) surface on the adhesion of coating to substrate was systematically studied by cross‐cut and tape peel methods through temperature‐shock aging tests. The differences between the wettabilities and elemental compositions of plasma‐treated and chromic acid‐treated PC surfaces prior to coating deposition were evaluated by contact angle measurements and X‐ray photoelectron spectroscopy. To elucidate the adhesion failure of the coatings, nanoindentation technique was employed for the quantitative assessment of the nanomechanical changes of coating depositions on PCs after temperature‐shock aging tests. The two surface treatments can significantly improve the hydrophilicity and polarity of the PC surface, resulting in excellent adhesion of the coating on the PC substrate. Temperature‐shock aging tests reveal that the adhesion of coating on plasma‐modified substrates is superior to that of chromic acid‐etched substrates. We propose that the improved adhesion of the coating on the plasma‐modified PC can be attributed to the higher wettability and more cross‐linking of C–O–Si bonds at the coating–substrate interface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
To convert the hydrophilic cellulose fiber into hydrophobic, multilayers composed of cationic polyacrylamide (CPAM) and lignosulfonate (LS) were constructed on cellulose fiber surface using layer-by-layer (LBL) self-assembly technique. The presence of CPAM/LS multilayers were validated by zeta potential, X-ray photoelectron spectroscopy and atomic force microscopy (AFM). It was found that potential of fiber surface inversed after deposition of each layer, the contents of characteristic elements (i.e. S and N) of CPAM/LS multilayers increased with increasing bilayer number, furthermore, the calculated surface LS content increased linearly as a function of bilayers. AFM phase images indicated that the cellulose microfibrils on fiber surface were gradually covered by LS granules, resulting in an increase in fiber surface roughness as self-assembly proceeded. The wetting properties of modified cellulose fibers were detected by dynamic contact angle measurement. The results showed that the initial water contact angle gradually increased and the attenuation rate of the contact angle gradually decreased with the number of bilayers, suggesting that the controllable hydrophobicity of cellulose fiber can be achieved depending on the number of bilayers. It also showed that the polyelectrolyte presented in the outermost layer significantly influenced the wetting properties of cellulose fibers, and a higher hydrophobicity was observed when LS was in the outermost layer. Moreover, tensile strength test was performed on the handsheet prepared from LBL modified fibers to evaluate the effect of CPAM/LS multilayers on strength property of cellulose fiber networks. The tensile index of handsheet prepared from fibers modified with a (CPAM/LS)5 multilayer increased by 12.4% compared with that of handsheet prepared from original fibers. The print density of handsheet increased with the number of bilayers, suggesting that printability of the handsheet was improved by constructing CPAM/LS multilayers on cellulose fiber surface. This strategy will have a positive impact and potential application value in printing process control of cellulose fiber-based products.  相似文献   

15.
In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic silica (SiO_2) nanoparticles onto the surface to improve anti-fouling performance. A range of testing techniques including attenuated total reflection Flourier transformed infrared spectroscopy(ATR-FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), water contact angle, mechanical test,filtration and anti-fouling performance were carried out to discuss the influence of different modification conditions on the properties of the membranes. The prepared hollow fiber membranes display the significantly excellent performance when the vinyl trimethoxy silane (VTMS) concentration was 13%, the pH value of the hydrolyzate was 4 and the hydrolysis reaction time was 6 h. In particular, the hydrophilicity of modified membranes was improved effectively, resulting in the enhancement of membrane anti-fouling properties. The results of this work can be consulted for improving the anti-fouling performance of the UHMWPE microfiltration hollow fiber membrane applied in the field of water purification.  相似文献   

16.
Potassium permanganate was applied to improve the surface properties of the ultra‐high molecular weight polyethylene (UHMWPE) fibers. The results suggested that the surface oxygen atoms increased dramatically and the O/C ratio increased from 0.030 to 0.563 after treatment. The increased surface roughness and the O‐containing groups on the treated fiber surface decreased the contact angles with water and ethylene glycol. The crystallinity and the crystallite size of the treated fibers increased, and the DSC results indicated that chain scission and the formation of ―C═O chemical defects in the amorphous region were the main mechanisms of the deterioration of the treated UHMEPE fibers. The breaking strength and the elongation at break of the fibers decreased, but the modulus increased after treatment. The treated fibers exhibited better adhesion with epoxy matrix. An improvement of 27.6% from 101.4 to 129.4 MPa in ILSS confirmed the improvement in the interfacial adhesion strength of composites. The impact and bending strength of composites were both improved.  相似文献   

17.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE) fibers have been modified by plasma treatment to increase adhesion in high‐density polyethylene (HDPE) matrices. Results showed that surface roughness predominates for modified UHMWPE fibers, indicating that the plasma treatment favors the interaction with HDPE. Unmodified HDPE composite samples gave a lower interlaminar shear strength than did the samples that were incorporated with UHMWPE. The addition of unmodified UHMWPE fibers to the neat HDPE significantly increases interlaminar shear strengths of composites, up to 20 vol%. The oxygen concentration increased from 16.16 %to 21.99%, and the ratio of oxygen to carbon atoms increased significantly from 0.194 to 0.284 after oxygen plasma treatment for 5 minutes with a power of 300 W.  相似文献   

18.
Ultrahigh molecular weight polyethylene (UHMWPE) fibers exhibit excellent mechanical property, but their low surface activity limits the application in many fields. In this work, an efficient method was used to improve the surface activity and adhesion property of UHMWPE fibers. The amine functionalized UHMWPE fibers were prepared by the combination of bio‐inspired polydopamine (PDA) and grafted hexamethylene diamine (HMDA). The chemical structure of UHMWPE fibers was characterized by X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy. The surface morphologies and mechanical property of the fibers were investigated by scanning electron microscopy and tensile testing respectively. In addition, a single‐fiber pull‐out test was carried out to investigate the adhesion property of the fibers with epoxy resin matrix. The results showed that PDA was coated on the surface of UHMWPE fibers and then HMDA was successfully grafted on the PDA layers. The excellent mechanical property of UHMWPE fibers had no obvious change. Compared with the pristine UHMWPE fibers, the interfacial shear strength of the PDA coated UHMWPE fibers with the epoxy resin matrix improved by 28.3%, while the IFSS of the HMDA grafted UHMWPE fibers had an increase of 82.7%. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Porous hydrophobic polypropylene (PP) membranes were subjected to the surface modification by the γ-ray induced graft copolymerization with hydrophilic 2-hydroxyethyl methacrylate (HEMA). The structural changes and surface morphologies of the modified PP membranes were characterized by a Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA) and field emission scanning electron microscopy (FE-SEM). Peroxides produced from γ-ray irradiation were determined by a 1,1-diphenyl-2-picryl hydrazyl (DPPH) method and the surface hydrophilicities of membranes were measured by a static contact angle measurement. The contact angle of the modified membranes reduced with the degree of grafting (DG) of HEMA onto the membrane surface, and it decreased up to about half of that before modification. The permeation behaviors of all membranes were investigated by a bovine serum albumin (BSA) filtration experiment. As a result, the DG of the modified membrane increased with the reaction time. However, in the case of irradiation dosage it showed the maximum value at 20 kGy. Also, the modified membrane showed a higher solution flux, lower BSA adsorption, and the better flux recovery after cleaning than that of the unmodified membrane. Particularly, 40.6% grafted membrane showed a two-fold increase in a BSA solution flux, 62% reduction in total fouling and three-fold increase in flux recovery after chemical cleaning.  相似文献   

20.
The present work comparatively studied the modification effects of short carbon fiber (CF) on the mechanical properties and fretting wear behavior of ultra‐high molecular weight polyethylene (UHMWPE)/CF composites. The interactions between CFs and UHMWPE interface were also investigated in detail. The results showed that, with the increase in fiber content, the compressive modulus and hardness of the composites increased, while its impact strength decreased. It was found that filling of CF can reduce the friction and wear of UHMWPE. In addition, the UHMWPE‐based composites reinforced with nitric acid‐treated CF exhibited better mechanical properties, lower friction coefficient, and higher wear resistance than those of untreated UHMWPE/CF composites. This was attributed to the improvement of interfacial adhesion and compatibility between CF and UHMWPE matrix caused by surface chemical modification of CF. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号