首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High‐strength glass fabric (HSGF)/phenolic laminates modified with different contents of carbon nanotubes (CNTs) were fabricated by hot‐compression technique. The effects of CNTs on the interface of HSGF/phenolic, interlaminar shear strength (ILSS) and water‐lubricated tribological performance of HSGF/phenolic laminate were investigated. The ILSS of the laminates were tested on a universal testing machine (DY35), and the tribological properties were evaluated by a block‐on‐ring tribo‐tester. The interfaces of HSGF/phenolic and the worn surfaces of the laminates were analyzed by scanning electron microscope. The results showed that the moderate incorporation of CNTs improved the interface of HSGF/phenolic and accordingly enhanced the ILSS of the laminate. Besides, the friction coefficient of HSGF/phenolic laminate sliding against stainless steel in water can be remarkably stabilized and lowered by the incorporation of CNTs due to the better water lubrication induced by added CNTs and the intrinsic self‐lubrication of CNTs which were further graphitized during the friction and wear process. And the wear rate of the laminate can be accordingly reduced by 1 order of magnitude. The results indicate that CNTs have excellent potential in enhancing both ILSS and tribological fabric/polymer laminate composite, which will greatly improve the current situation of deterioration on mechanical properties by adding traditional solid lubricants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
《先进技术聚合物》2018,29(2):767-774
Multi‐wall carbon nanotubes (MWCNTs) and high strength glass fabrics (HSGFs) were modified by polydopamine and polyethyleneimine, respectively. The aim is to improve the friction and wear performance of the synthesized laminate composites in water environment. In this work, polydopamine was used to improve the dispersibility of MWCNTs in phenolic resin matrix, and polyethyleneimine was utilized to enhance the wettability and reactivity of HSGFs. The modified results showed that the dispersibility of MWCNTs treated by polydopamine in water had a distinct improvement in comparison with that of the pristine MWCNTs. Furthermore, it can be clearly observed that good dispersibility can improve the friction and wear performance of the laminate composites. After functionalizing HSGFs by polyethyleneimine, the laminate composites exhibited excellent interfacial bonding, also greatly enhancing the friction and wear properties of the composites.  相似文献   

3.
Carbon fabric (CF) was surface treated with silane-coupling agent modification, HNO3 oxidation, combined surface treatment, respectively. The friction and wear properties of the carbon fabric reinforced phenolic composites (CFP), sliding against GCr15 steel rings, were investigated on an M-2000 model ring-on-block test rig. Experimental results revealed that combined surface treatment largely reduced the friction and wear of the CFP composites. Scanning electron microscope (SEM) investigation of the worn surfaces of the CFP composites showed that combined surface modified CFP composite had the strongest interfacial adhesion and the smoothest worn surface under given load and sliding rate. SEM and X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after combined surface treatment, which improved the adhesion between the fiber and the phenolic resin matrix and hence to improve the friction-reduction and anti-wear properties of the CFP composite.  相似文献   

4.
The functionalization of multi‐walled carbon nanotubes (MWNTs) was achieved by grafting furfuryl amine (FA) onto the surfaces of MWNTs. Furthermore, the functional MWNTs were incorporated into carbon fabric composites and the tribological properties of the resulting composites were investigated systematically on a model ring‐on‐block test rig. Friction and wear tests revealed that the modified MWNTs filled carbon fabric composite has the highest wear resistance under all different sliding conditions. Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) revealed that MWNTs were successfully functionalized and the modification led to an improvement in the dispersion of MWNTs, which played an important role on the enhanced tribological properties of carbon fabric composites. It can also be found that the friction and wear behavior of MWNTs filled carbon fabric composites are closely related with the sliding conditions such as sliding speed, load, and lubrication conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Carbon fibers were coated in an attempt to improve the interfacial properties between carbon fibers and ultra‐high molecular weight polyethylene resin matrix. Atomic force microscopy, scanning electron microscopy, and X‐ray photoelectron spectroscopy were performed to characterize the changes of carbon fiber surface. Atomic force microscopy results show that the coating of carbon fiber significantly increased the carbon fiber surface roughness. X‐ray photoelectron spectroscopy indicates that silicon containing functional groups obviously increased after modification. Interlaminar shear strength was used to characterize the interfacial properties of the composites.  相似文献   

6.
The present work comparatively studied the modification effects of short carbon fiber (CF) on the mechanical properties and fretting wear behavior of ultra‐high molecular weight polyethylene (UHMWPE)/CF composites. The interactions between CFs and UHMWPE interface were also investigated in detail. The results showed that, with the increase in fiber content, the compressive modulus and hardness of the composites increased, while its impact strength decreased. It was found that filling of CF can reduce the friction and wear of UHMWPE. In addition, the UHMWPE‐based composites reinforced with nitric acid‐treated CF exhibited better mechanical properties, lower friction coefficient, and higher wear resistance than those of untreated UHMWPE/CF composites. This was attributed to the improvement of interfacial adhesion and compatibility between CF and UHMWPE matrix caused by surface chemical modification of CF. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Through the functionalization of multiwalled carbon nanotubes (MWCNTs) by 0,0′‐diallylbisphenol A (DBA), the interface situation between MWCNTs and bismaleimide (BMI) was improved, as detected by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). The improved interface situation was considered to be the main reason for the huge increased microhardness value and greatly improved the microtribological property of MWCNTs/BMI composites. Besides, the wear mechanism for the composite was also believed to be related to the interfacial situation. The rough wavelike worn surface of pure BMI resin is attributed to its poor load capacity. The smoother waterfall‐shape worn surface of MWCNTs/BMI is related to the interface formed by the addition of MWCNTs while the ultrasmooth worn surface of DBA modified MWCNTs/BMI is due to the greatly improved interfacial interaction of the composite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
In the present research, a multifunctional hierarchical reinforcement was prepared by chemical modification of carbon fibers (CFs) with halloysite nanotubes (HNTs) by the bridging diethylenetriaminepentaacetic acid (DTPA) for improving interfacial microstructures and properties of composites. Surface structures and groups of modified HNTs and CFs were characterized systematically. The uniform distributions of the introduced DTPA and HNTs helped to increase fiber polarity, surface energy, and wettability. As a consequence, significant enhancements of interfacial properties and hydrothermal aging resistance of composites were achieved, and interfacial reinforcing mechanisms have also been studied. Moreover, the storage modulus showed a 17.95% improvement, and the glass transition temperature was enhanced by 17°C by dynamic mechanical analysis testing.  相似文献   

9.
High performance continuous fiber surface modification by inductively coupled RF plasma (ICP) and dielectric barrier discharge (DBD) low temperature plasma were conducted. X-ray photoelectron spectroscopy (XPS) and other analytical testing methods systematically studied plasma treatment time, discharge power, discharge pressure, etc, on fiber surface state, surface composition, and surface shape changes in the appearance and wetting properties. The results show that after plasma treatment the surface of the fiber is grafted with a large number of polar functional groups such as carboxyl groups and hydroxyl groups. The surface roughness increases, the surface free energy increases, and the fiber wetting property is significantly improved, resulting in improvement in interlaminar shear strength (ILSS) between the fiber and the resin matrix. Finally, the surfaces of the fibers and its relationship with interfacial properties of fiber reinforced bismaleimide composites are also discussed.  相似文献   

10.
In this study, we prepared a-C:H films with different nanostructures at different methane flow rates. The effect of the methane flow rate on the tribological properties of 440 steel/a-C:H friction pairs and a-C:H:Ti/a-C:H friction pairs in an atmospheric environment was studied by a reciprocating friction machine. The results show that there is no relationship between the tribological properties of 440 steel/a-C:H friction pair and methane flow rate. The tribological performance of the a-C:H:Ti/a-C:H friction pair was greatly improved. In particular, in the friction pair of a-C:H:Ti/a-C:H with a methane flow rate of 20 sccm, superlubricity is shown, and the wear rate is only 4.04 × 10−9 mm3/Nm. After tribological experiments, Raman spectroscopy, XPS, and other characterization methods were used to study the relationship between the nanostructure and tribological properties of a-C:H:Ti films and a-C:H prepared with different methane flow rates. This study is great significance to the application of a-C:H:Ti/a-C:H friction pair in mechanical parts under atmospheric environment.  相似文献   

11.
Carbon fiber reinforced Ultra High Molecular Weight Polyethylene (CF/UHMWPE) composites have been filled with acid treated carbon nanotube to enhance the adhesion. According to the modification, the interlaminar shear strength (ILSS) of composites has been greatly improved. Dynamic wetting method, XPS and SEM are used to examine the microscopic properties of resultant composites. The enhanced ILSS is attributed to the CNT interlock, which improves the wetting between carbon fibers and resins. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
A simple and efficient chemical method was developed to graft directly carbon nanofibers (CNFs) onto carbon fiber (CF) surface to construct a CF‐CNF hierarchical reinforcing structure. The grafted CF reinforcements via covalent ester linkage at low temperature without any usage of dendrimer or catalyst was investigated by FTIR, X‐ray photoelectron spectroscopy, Raman, scanning electron microscopy, atomic force microscopy, dynamic contact angle analysis, and single fiber tensile testing. The results indicated that the CNFs with high density could effectively increase the polarity, wettability, and roughness of the CF surface. Simultaneous enhancements of the interfacial shear strength, flexural strength, and dynamic mechanical properties as well as the tensile strength of CFs were achieved, for an increase of 75.8%, 21.9%, 21.7%, and 0.5%, respectively. We believe the facile and effective method may provide a novel and promising interface design strategy for next‐generation advanced composite structures.  相似文献   

13.
To understand the effects of atomic oxygen (AO) irradiation on the structural and tribological behaviors of polymer composites, polyimide/Al2O3 composites were irradiated with AO in a ground‐based simulation facility. The structural changes were characterized by X‐ray photoelectron spectroscopy and attenuated total‐reflection FTIR, whereas the tribological changes were evaluated by friction and wear tests as well as scanning electron microscopy analysis of the worn surfaces. It was found that AO irradiation induced the oxidation and degradation of polyimide molecular chains, which increased the O concentration and decreased the C concentration in the composite surfaces. The destruction action of AO changed the surface chemical structure and morphology of the samples. Friction and wear tests indicated that AO irradiation decreased the friction coefficient but increased the wear rate of both pure and Al2O3 filled polyimides. In terms of the tribological properties, appropriate content of Al2O3 might be favorable for the improvement of tribological properties in AO environment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of different ratios of carbon fiber (CF) reinforcing polyimide (PI) and surface treatment of CF on the microstructure and wear resistance of surface layers was studied. The increase of CF content led to a gradual increase in the Interlaminar shear strength (ILSS) values, and the maximum ILSS value arises when the CF content is 15 vol%, with an improvement of 13.45% compared to virgin CF composites. The increased interfacial adhesion could be contributed mainly to the presence of branched PI at the interface region. SEM of the worn surface confirms that the plasma treatment efficiently improves the interfacial adhesion of CF/PI composite. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Four types of C/C-SiC composites were prepared by isothermal chemical vapor infiltration (ICVI) of SiC on C/C preforms of different densities. Tribological properties of the composites were evaluated by using MM-1000 testing machine. The results indicated that the friction behaviors of the composites are a strong function of the content of pyrolytic carbon (in matrix). Moreover, friction film was formed on the surface and increased with pyrolytic carbon content. Debris originated of particulate and film-type have been observed after friction testing with ratio and size determined by the content of pyrolytic carbon.  相似文献   

16.
During recent years, graphene as a solid lubrication material have been thoroughly studied under nano or micro scales, but rarely reported at industrial conditions. In present work, graphene films as solid lubricant were prepared on the surface of 201 stainless steel substrates by pencil sketch. And then the friction tests from 5 to 65 N were carried out via a homemade tribo-tester and used GCr15 balls (ø = 5 mm) as friction pairs. Not surprisingly, graphene films cannot bear the loads beyond 5 N, but interestingly, via gradually increasing the loads, graphene films show prominent load performance and steady state of friction coefficients at about 0.12 while the loads varied from 5 to 65 N. Compared with bare steel, the coefficient of graphene films reduced by about 80%, and the wear volume reduced to 1/28 when variable load (from 5 N to 30 N) were applied. Raman spectra shown that the structure of graphene had been changing into diamond-like carbon films with graphene distributed inside, which was confirmed by HRTEM that graphenes were coming with amorphous carbon. Considering the roughness of steel wafers (170 nm), one can speculate that, with graphene films' protection, the steel has no abrasion but plastic deformation instead. It is concluded that the shearing force induced the film densification via sp2 to sp3 changing that enforced cross-linking. This cross-linking carbon matrix was responsible for high load bearing and the graphene exfoliated into graphene under shearing force contribute to low steady-state friction. Benefiting from sketch, one can get a lubrication film on any substrates with complex topography, our results shed light on the growth of graphene films for industrial use.  相似文献   

17.
A polyacrylonitrile‐based carbon fiber was electrochemically oxidized in an aqueous ammonium bicarbonate solution with current density of up to 2.76 A/m2 at room temperature. X‐ray photoelectron spectroscopy revealed that the oxygen content increased with increasing current density before approaching saturation. The increase can be divided into two regions, the rapid increase region (0–1.78 A/m2) and a plateau region (1.78–2.76 A/m2). The surface chemistry analysis showed that the interlaminar shear strength (ILSS) value of the carbon fiber/epoxy composite could be improved by 24.7%. The carbon structure was examined using Raman spectroscopy in terms of order/disorder in the graphite structure and the results indicated that the relative percentage of graphite carbon in the form of sp2 hybridization increased above a current density of 1.39 A/m2. The increasing non‐polar graphite carbon on the carbon fiber surface decreased the surface energy. As a result, both the surface free energy () and its polar component () decreased when current density increased above 1.78 A/m2. The ILSS value had no direct relationship with the nature and surface density of the oxygen‐containing functional groups nor with the carbon structure. It is the surface free energy (), especially the polar component (), which played a critical role in affecting the interfacial adhesion of carbon fiber/epoxy composites. The ILSS value changed with increasing current density and could be divided into three distinct regions, as chemical interaction region (I), anchor force region (II) and matrix damage region (III). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Water barrier properties and tribological performance (hardness and wear behavior) of new hybrid nanocomposites under dry and wet conditions were investigated. The new fabricated hybrid nanocomposite laminates consist of epoxy reinforced with woven and nonwoven tissue glass fibers and two different types of nanoparticles, silica (SiO2) and carbon black nanoparticles (C). These nanoparticles were incorporated into epoxy resin as a single nanoparticle (either SiO2 or C) or combining SiO2 and C nanoparticles simultaneously with different weight fractions. The results showed that addition of carbon nanoparticles with 0.5 and 1 wt% resulted in maximum reduction in water uptake by 28.55% and 21.66%, respectively, as compared with neat glass fiber reinforced epoxy composites. Addition of all studied types and contents of nanoparticles improves hardness in dry and wet conditions over unfilled fiber composites. Under dry conditions, maximum reduction of 47.26% in weight loss was obtained with specimens containing 1 wt% carbon nanoparticles; however, in wet conditions, weight loss was reduced by 17.525% for specimens containing 0.5 wt% carbon nanoparticles as compared with unfilled fiber composites. Diffusion coefficients for different types of the hybrid nanocomposites were computed using Fickian and Langmuir models of diffusion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The influence of chain lengths on interfacial performances of carbon fiber/polyarylacetylene composites was studied. For this purpose, four coupling agents, methyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane and dodecyltrimethoxysilane, were grafted onto fiber surface to obtain different chain lengths. The resulting carbon fiber surface was characterized by XPS and dynamic contact angle test. Interfacial adhesion in the resulting fiber reinforced polyarylacetylene resin composites was also evaluated by fracture morphology analysis and interfacial shear strength test. It was found that the interfacial adhesion in composites greatly increased with chain lengths on fiber surface. The improvement of interfacial adhesion was attributed to the interaction between the chain of coupling agents on fiber surface and that of polyarylacetylene resin at the interface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Pitch‐based short carbon fibers (CFs) were treated by air oxidation and cryogenic nitrogen, respectively. Thereafter the treated and untreated CFs were incorporated into polyimide (PI) matrix to form composites. The CFs before and after treatment were examined by XPS and SEM.The flexural strength of the specimen was determined in a three‐point test machine and the tribological properties of PI composites sliding against GCr15 steel rings were evaluated on an M‐2000 model ring‐on‐block test rig. The results show that the surface of the treated CFs became rougher. Lots of active groups formed on the CF surface after air oxidation.The treatment can effectively improve the mechanical and tribological properties in their PI composites due to the enhanced fiber‐matrix interfacial bonding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号