首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We use a hybrid two-phase numerical methodology to investigate the flow-field subsequent to the detonation of a spherical charge of TNT with an ambient distribution of a dilute cloud of aluminum particles. Rayleigh–Taylor instability ensues on the contact surface that separates the inner detonation products and the outer shock-compressed air due to interphase interaction, which grows in time and results in a mixing layer where the detonation products afterburn with the air. At early times, the ambient particles are completely engulfed into the detonation products, where they pick up heat and ignite, pick up momentum and disperse. Subsequently, as they disperse radially outwards, they interact with the temporally growing Rayleigh–Taylor structures, and the vortex rings around the hydrodynamic structures results in the clustering of the particles by also introducing local transverse dispersion. Then the particles leave the mixing layer and quench, yet preserve their hydrodynamic ‘footprint’ even until much later; due to this clustering, preferential heating and combustion of particles is observed. With a higher initial mass loading in the ambient cloud, larger clusters are observed due to stronger/larger hydrodynamic structures in the mixing layer – a direct consequence of more particles available to perturb the contact surface initially. With a larger particle size in the initial cloud, clustering is not observed, but when the initial cloud is wider, fewer and degenerate clusters are observed. We identify five different phases in the dispersion of the particles: (1) engulfment phase; (2) hydrodynamic instability-interaction phase; (3) first vortex-free dispersion phase; (4) reshock phase; and (5) second vortex-free dispersion phase. Finally, a theoretical Buoyancy-Drag model is used to predict the growth pattern of the ‘bubbles’ and is in agreement with the simulation results. Overall, this study has provided some useful insights on the post-detonation explosive dispersal of dilute aluminum particle clouds.  相似文献   

2.
Jian-Xin Nie 《中国物理 B》2022,31(4):44703-044703
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature (in unit 103 K), high pressure (in unit GPa), and high-speed motion (in units km/s) was studied, and a combustion model of the aluminum particles in detonation environment was established. Based on this model, a combustion control equation for aluminum particles in detonation environment was obtained. It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size, system temperature, and diffusion coefficient. The calculation result shows that a higher system temperature, larger diffusion coefficient, and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles. After considering the particle size distribution characteristics of aluminum powder, the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder, and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results. This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment.  相似文献   

3.
An experimental study of the characteristics of the explosion of mixtures of ammonium perchlorate, aluminum, and nitromethane with a large excess of aluminum (1.45 to 1.66 g/cm3 in density) confined in plastic enclosures and immersed in small elastic-wall reservoirs with water is conducted. It is shown that composite charges, 20 mm in diameter, surrounded by a water layer of thickness 20–30 cm and detonate in a nonideal detonation mode. High-speed cinematography records show the possibility of the intense mixing of the detonation products with the surrounding water and of the burning of excess aluminum particles in a heterogeneous cloud. The time scales of the development of secondary energy release by burning of aluminum particles in water are estimated. The possibility of controlling the characteristics of the pressure waves generated by the explosion, for example, by means of a preliminary bubbling of the water with air near the charge, is demonstrated.  相似文献   

4.
两相混合层中颗粒运动的数值模拟   总被引:6,自引:0,他引:6  
本文采用离散涡方法对平板混合层流动进行了数值模拟,得到了与实验完全定量符合的速度场。再用单向耦合方法模拟了混合层流场中颗粒的运动。分析了混合层流动中大尺度涡结构及Stokes数对颗粒扩散的影响。与前人工作中所采用的每个时间步一个颗粒在固定的位置进入计算域的方法不同,本文中每个时间步有多个颗粒在入口处以随机的横向位置进入计算域。因此,在不需增加太多计算量的基础上,计算域中可以包含足够多的颗粒以获得较精确的统计结果。采用本文方法得到的颗粒速度场与实验结果定量符合得很好。  相似文献   

5.
本文采用流动显示的方法对平板混合层中上下层流体速度比对固体颗粒在混合层中沉降的影响进行了研究。实验中分别采用粒径小于 40 um,粒径 98~104um,粒径 154~160um的玻璃微珠以及环氧树脂作为固相颗粒,对这些颗粒在速度比分别为1:1.2、1:2和1:2.8的液相混合层中的运动进行了显示。结果表明混合层中大涡结构对固体颗粒的沉降具有迟滞作用,其作用程度取决于混合层中上下层流体速度比。速度比越大,颗粒的沉降越慢。  相似文献   

6.
由三维离散涡丝方法对气固轴对称射流场数值模拟的结果表明,当固粒 St数<<1时,固粒明显受到流场运动的影响; St= 1时,固粒均匀分布在涡结构周围;当 St >>1时,固粒受流场影响较弱。对涡环沿周向施以五个波长扰动时,固粒扩散范围较宽。  相似文献   

7.
Interaction of vortex rings with solid is an important research topic of hydrodynamic. In this study, a multiple-relaxation time (MRT) lattice Boltzmann method (LBM) is used to investigate the flow of a vortex ring impacting spheroidal particles. The MRT-LBM is validated through the cases of vortex ring impacting a flat wall. The vortex evolution due to particle size, the aspect ratio of a prolate particle, as well as Reynolds $(Re)$ number are discussed in detail. When the vortex ring impacting a stationary sphere, the primary and secondary vortex rings wrap around each other, which is different from the situation of the vortex ring impacting a plate. For the vortex ring impacting with a prolate spheroid, the secondary vortex ring stretches mainly along the long axis of the ellipsoid particle. However, it is found that after the vortex wrapping stage, the primary vortex recovers along the short axis of the particle faster than that in the long axis, i.e., the primary vortex ring stretches mainly along the short axis of the particle. That has never been addressed in the literature.  相似文献   

8.
We present a numerical method for computing solutions of the incompressible Euler or Navier–Stokes equations when a principal feature of the flow is the presence of an interface between two fluids with different fluid properties. The method is based on a second-order projection method for variable density flows using an “approximate projection” formulation. The boundary between the fluids is tracked with a second-order, volume-of-fluid interface tracking algorithm. We present results for viscious Rayleigh–Taylor problems at early time with equal and unequal viscosities to demonstrate the convergence of the algorithm. We also present computational results for the Rayleigh–Taylor instability in air-helium and for bubbles and drops in an air–water system without surface tension to demonstrate the behavior of the algorithm on problems with large density and viscosity contrasts.  相似文献   

9.
通过理论推导提出了一种评价高速流动PIV示踪粒子随流能力的松弛特性分析模型,在法向Mach数大于1.4时具有良好的适用性.将新模型应用于试验测量,发展了高速流动PIV系统和示踪粒子布撒技术,验证了高速流动PIV的定量化测量能力.针对空间发展的二维超声速气固两相混合层,数值模拟了不同Stokes数和对流Mach数(Mc)下的粒子跟随性以及弥散和迁徙运动,结果表明:相同对流Mach数,粒径越小的示踪粒子跟随性越好,Stokes数在[1, 10]范围内的粒子有最大扩散距离.示踪粒子的直径大小决定其在超声速混合层大涡拟序结构中的分布特征,且粒径越小,气体与粒子的掺混越剧烈.相同粒径的粒子,对流Mach数越大跟随性越差.   相似文献   

10.
Active mixing control of a methane/air isothermal coaxial jet was achieved using micro magnetic flap actuators arranged on the inner surface of the outer annular nozzle. The spatio-temporal evolution of vortical structures and the scalar mixing were studied through the particle image velocimetry and planar laser-induced fluorescence methods. In contrast to studies on jet control using acoustic forcing, the mechanical movement of the flap directly generated large-scale intense vortices. The mixing was enhanced significantly by the vortices formed in the inner shear layer, although the control input was given to the outer shear layer. It was found that the primary vortex rings dominated the near-field mixing, while streamwise vortices were responsible for the downstream mixing. It was also demonstrated that the radial range of the inner fuel transportation could be manipulated flexibly by adjusting the shedding interval of the vortices. Especially, the mixing was enhanced most significantly when the primary vortices were most densely populated near the nozzle exit at the control Strouhal number of unity.  相似文献   

11.
The dynamics of homogeneous shear turbulence laden with spherical finite-size particles is investigated using fully resolved numerical simulations to understand how the presence of particles modulates turbulent shear flows. We focus on a dilute flow laden with non-sedimenting particles whose diameter is slightly smaller than or comparable with those of vortex cores in turbulence. An immersed boundary method is adopted to represent a spherical finite-size particle. Numerical results show that the presence of particles augments the viscous dissipation of turbulence kinetic energy, which leads to a slower increase in the turbulence energy. Although the augmentation of energy dissipation occurs predominantly inside viscous layers surrounding particles in an initial period, the contribution from their outside becomes more significant due to the modification of turbulence structures as turbulence develops. It is found that the particles exhibit weak tendency to accumulate in vortex layers. The particles approaching and colliding with vortex layers induce large velocity fluctuations, which leads to the generation and shedding of thin vortex tubes. Newly generated vortex tubes interact with developed vortex tubes and layers, and modify the entire structure of the vorticity field.  相似文献   

12.
Videorecording was used to measure the velocities of expansion of detonation products (DPs) in the axial and radial directions during the detonation of phlegmatized RDX (PRDX) and its mixtures with ASD-4 aluminum powder (PRDXA). It was demonstrated that the initial particle velocities of the DPs in the axial and radial direction for PRDXA are 1–2 km/s higher than those for PRDX for expansion into an atmospheric-pressure air medium and 0.5–2.0 km/s lower for expansion into a low-pressure (10 kPa) air medium. The result of this can be explained by the rapid reaction of aluminum particles during the turbulent mixing of DPs with air due to the formation of cumulative microjets at the surface of the charge.  相似文献   

13.
We consider the diffusion of the low-inertia particle number density field in random divergence-free hydrodynamic flows. The principal feature of this diffusion is the divergence of the particle velocity field, which results in clustering of the particle number density field. This phenomenon is coherent, occurs with a unit probability, and must show up in almost all realizations of the process dynamics. We calculate the statistical parameters that characterize clustering in three-dimensional and two-dimensional random fluid flows and in a rapidly rotating two-dimensional random flow. In the former case, the vortex component of the random divergence-free flow generates a vortex component of the low-inertia particle velocity field, which generates a potential component of the velocity field through advection. By contrast, in the case of rapid rotation, a potential component of the velocity field is generated directly by the vortex component of the random divergence-free flow (linear problem).  相似文献   

14.
混合层流场中涡结构对流速度的特性   总被引:2,自引:0,他引:2       下载免费PDF全文
郭广明  刘洪  张斌  张忠阳  张庆兵 《物理学报》2016,65(7):74702-074702
基于大涡模拟和光线追踪方法, 对光线穿越流场后的光程分布与混合层流场中涡结构之间的关系进行了分析, 提出了一种基于涡核位置提取的涡结构瞬时对流速度定量计算方法, 并使用直接几何测量数据进行了验证. 通过对不同尺寸的涡结构、涡-涡配对及融合过程中的涡结构和强压缩性流场中涡结构瞬时对流速度的定量数值计算, 揭示了混合层流场中涡结构对流速度的特性: 对单个涡结构而言, 其瞬时对流速度具有脉动特性, 且脉动幅度随涡结构尺寸和流场压缩性而变化; 在涡-涡配对及融合过程中, 涡对中各个涡结构的瞬时对流速度都表现出类似正弦波动的特点. 针对混合层流场中涡结构对流速度的特性, 给出了其背后的物理原因.  相似文献   

15.
Two dimensional numerical simulation of the structure of gaseous detonation is investigated by utilizing the single step Arrhenius kinetic reaction mechanism in both high and low activation energy mixtures, characterized by their irregular and regular detonation structure, respectively. All the computations are performed on a small Beowulf cluster with six nodes. The dependency of the structure on the grid resolution is performed and it is found that, resolution of more than 300 cells per hrl is required to demonstrate the role of hydrodynamic instabilities, (KH and RM instabilities) in detonation propagation in irregular structures, while due to the absence of fine-scale structures, resolution of 50 cells per hrl, gives the physical structure of detonation with regular structures. Results show that the transverse waves in irregular structure are significantly stronger than the transverse wave in regular structure detonation, which can enhance the burning rate of the unburned pockets behind the shock front. Results for resolution of 600 cells per hrl illustrate that, in addition to the primary mode, the interaction of large vortices with the shock front provides secondary modes in the structure which leads to the irregularity of the structure in high activation energy mixture. In contrast with the results obtained for regular structure, which no unburned gas pockets and vortices observed behind the front, the results for irregular structure reveal that most portions of the gases, escape from shock compression and create large unburned gas pockets behind the both weak section of the Mach stem and the incident wave, which will burn eventually by the turbulent mixing due to the vortices associated with hydrodynamic instabilities. Therefore, the ignition mechanism in irregular structure is due to the both shock compression and by turbulent mixing associated with hydrodynamic instabilities, while the shock compression yields the ignition mechanism in regular structure detonation.  相似文献   

16.
张冬冬  谭建国  李浩  侯聚微 《物理学报》2017,66(10):104702-104702
在超声速吸气式混合层风洞中,采用基于纳米粒子的平面激光散射(NPLS)技术对平板混合层和三角波瓣混合器诱导的混合层流场精细结构进行了对比实验研究.上下两层来流的实测马赫数分别为1.98和2.84,对流马赫数为0.2.NPLS图像清晰地展示了Kelvin-Helmholtz涡、流向涡、波系结构以及大尺度涡结构的配对合并过程.通过对比分析时间相关的NPLS流场图像,发现了大尺度拟序结构随时间发展演化的非定常特性.基于流动显示结果,采用分形维数和间歇因子指标对流场结构和混合特性进行了定量分析.实验研究表明,三角波瓣混合器诱导的流向涡结构显著提高了上下两层来流的掺混效率,其流动远场的分形维数突破了平板混合层中完全湍流区的分形维数值,达到了1.88,流场结构表现出明显的破碎性,有利于流动在标量层面的扩散和掺混.流动间歇性分析表明,流向涡与展向涡的相互剪切作用主导着混合层的掺混特性,同时由于流向涡的卷吸作用,三角波瓣混合器诱导的混合层混合区域更大,更多的流质被卷入混合区完成混合.  相似文献   

17.
It was found that laser irradiation of silicon immersed in water can lead to regular hexagonal patterns on the silicon surface with period of ∼10 μm within several tens of minutes. The formation and the evolution of the surface patterns can be interpreted as Rayleigh–Taylor instability of the melted silicon layer under the interfacial pressure formed by fast boiling of the interfacial water at the laser-heated silicon surface. Based on the mechanism, a liquid film equation was proposed. The time evolution of the patterns was then compared with that of the well-defined classical Rayleigh–Taylor instability system. It showed that the two systems were qualitatively consistent in several aspects, supporting the Rayleigh–Taylor instability mechanism proposed.  相似文献   

18.
We present new classical solutions of Weinberg–Salam theory in the limit of vanishing weak mixing angle. In these static axially symmetric solutions, the Higgs field vanishes either on isolated points on the symmetry axis, or on rings centered around the symmetry axis. The solutions represent systems of sphalerons, antisphalerons, and vortex rings.  相似文献   

19.
Advection of passive tracers in an unsteady hydrodynamic flow consisting of a background stream and a vortex is analyzed as an example of chaotic particle scattering and transport. A numerical analysis reveals a nonattracting chaotic invariant set Λ that determines the scattering and trapping of particles from the incoming flow. The set has a hyperbolic component consisting of unstable periodic and aperiodic orbits and a nonhyperbolic component represented by marginally unstable orbits in the particle-trapping regions in the neighborhoods of the boundaries of outer invariant tori. The geometry and topology of chaotic scattering are examined. It is shown that both the trapping time for particles in the mixing region and the number of times their trajectories wind around the vortex have hierarchical fractal structure as functions of the initial particle coordinates. The hierarchy is found to have certain properties due to an infinite number of intersections of the stable manifold in Λ with a material line consisting of particles from the incoming flow. Scattering functions are singular on a Cantor set of initial conditions, and this property must manifest itself by strong fluctuations of quantities measured in experiments.  相似文献   

20.
研究发展了超高频基于纳米示踪的平面激光散射(nano-tracer planar laser scattering,NPLS)技术。基于多腔并联脉冲激光器技术、棱锥分光与短曝光相机集成技术以及高精度同步控制技术,实现了MHz级流场可视化和精细测量。采用超高频NPLS技术研究了对流Mach数Mac=0.17,0.26混合层流场,获得了时间序列的混合层高分辨率NPLS图像。采用阵列型涡流发生器开展流动控制研究,分析涡流发生器对混合层发展的影响特性。通过选取典型涡结构,分析了超声速混合层不同发展阶段的涡运动和发展演化规律。发现混合层中段的不稳定性发展阶段,涡结构以平移和旋转为主,伴随一定的拉伸;混合层后段以变形和破碎为主,有大量小尺度结构产生。并且小尺度结构会受到剪切、大尺度结构以及小激波的影响,发生明显的非定常运动。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号