首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homogeneous ignition of CH4/air, CH4/O2/H2O/N2, and CH4/O2/CO2/N2 mixtures over platinum was investigated experimentally and numerically at pressures 4 bar p 16 bar, temperatures 1120 K T 1420 K, and fuel-to-oxygen equivalence ratios 0.30 0.40. Experiments have been performed in an optically accessible catalytic channel-flow reactor and included planar laser induced fluorescence (LIF) of the OH radical for the determination of homogeneous (gas-phase) ignition and one-dimensional Raman measurements of major species concentrations across the reactor boundary layer for the assessment of the heterogeneous (catalytic) processes preceding homogeneous ignition. Numerical predictions were carried out with a 2D elliptic CFD code that included elementary heterogeneous and homogeneous chemical reaction schemes and detailed transport. The employed heterogeneous reaction scheme accurately captured the catalytic methane conversion upstream of the gaseous combustion zone. Two well-known gas-phase reaction mechanisms were tested for their capacity to reproduce measured homogeneous ignition characteristics. There were substantial differences in the performance of the two schemes, which were ascribed to their ability to correctly capture the pT parameter range of the self-inhibited ignition behavior of methane. Comparisons between measured and predicted homogeneous ignition distances have led to the validation of a gaseous reaction scheme at 6 bar p 16 bar, a pressure range of particular interest to gas-turbine catalytically stabilized combustion (CST) applications. The presence of heterogeneously produced water chemically promoted the onset of homogeneous ignition. Experiments and predictions with CH4/O2/H2O/N2 mixtures containing 57% per volume H2O have shown that the validated gaseous scheme was able to capture the chemical impact of water in the induction zone. Experiments with CO2 addition (30% per volume) were in good agreement with the numerical simulations and have indicated that CO2 had only a minor chemical impact on homogeneous ignition.  相似文献   

2.
The start-up of platinum-coated, hydrogen-fuelled planar channels with heights of 1 mm is investigated numerically using 2-D transient simulations with detailed hetero-/homogeneous chemistry, heat conduction in the solid wall and surface radiation heat transfer. Simulations encompass pressures of 1 and 5 bar and fuel-lean H2/air equivalence ratios of 0.10 to 0.28. Catalytic ignition is inhibited by rising pressure and increasing hydrogen concentration. However, at temperatures above the catalytic ignition temperature Tign, the dependencies of the heterogeneous reactivity reverse, showing a positive order ~1.5 with respect to hydrogen concentration and an overall positive pressure order of ~0.97. Despite the longer catalytic ignition times for the larger equivalence ratios, the times required to reach steady state are shorter at larger stoichiometries due to their enhanced catalytic reactivity at T > Tign and the resulting higher exothermicity. Following catalytic ignition, the wall temperatures eventually attain superadiabatic values due to the diffusional imbalance of hydrogen. Homogeneous chemistry considerably moderates the superadiabatic surface temperatures at 5 bar, as the gaseous combustion zone extends parallel to the channel wall and thus shields the catalyst surface from the hydrogen-rich channel core. Furthermore, gas-phase chemistry reduces the steady-state times and substantially increases the hydrogen conversion.  相似文献   

3.
The hetero-/homogeneous combustion of fuel-lean ethane/air mixtures over platinum was investigated experimentally and numerically at pressures of 1–14 bar, equivalence ratios of 0.1–0.5, and surface temperatures ranging from 700 to 1300 K. Experiments were carried out in an optically accessible channel-flow reactor and included in situ 1-D Raman measurements of major gas phase species concentrations across the channel boundary layer for determining the catalytic reactivity, and planar laser induced fluorescence (LIF) of the OH radical for assessing homogeneous ignition. Numerical simulations were performed with a 2-D CFD code with detailed hetero-/homogeneous C2 kinetic mechanisms and transport. An appropriately amended heterogeneous reaction scheme has been proposed, which captured the increase of ethane catalytic reactivity with rising pressure. This scheme, when coupled to a gas-phase reaction mechanism, reproduced the combustion processes over the reactor extent whereby both heterogeneous and homogeneous reactions were significant and moreover, provided good agreement to the measured homogeneous ignition locations. The validated hetero-/homogeneous kinetic schemes were suitable for modeling the catalytic combustion of ethane at elevated pressures and temperatures relevant to either microreactors or large-scale gas turbine reactors in power generation systems. It was further shown that the pressure dependence of the ethane catalytic reactivity was substantially stronger compared to that of methane, at temperatures up to 1000 K. Implications for high-pressure catalytic combustion of natural gas were finally drawn.  相似文献   

4.
The hetero-/homogeneous combustion of fuel-lean hydrogen/air premixtures over platinum was investigated experimentally and numerically in the pressure range 1 bar  p  10 bar. Experiments were carried out in an optically accessible channel-flow catalytic reactor and included planar laser induced fluorescence (LIF) of the OH radical for the assessment of homogeneous (gas-phase) ignition, and 1-D Raman measurements of major gas-phase species concentrations for the evaluation of the heterogeneous (catalytic) processes. Simulations were performed with a full-elliptic 2-D model that included detailed heterogeneous and homogeneous chemical reaction schemes. The predictions reproduced the measured catalytic hydrogen consumption, the onset of homogeneous ignition at pressures of up to 3 bar and the diminishing gas-phase combustion at p  4 bar. The suppression of gaseous combustion at elevated pressures bears the combined effects of the intrinsic homogeneous hydrogen kinetics and of the hetero/homogeneous chemistry coupling via the catalytically produced water over the gaseous induction zone. Transport effects, associated with the large diffusivity of hydrogen, have a smaller impact on the limiting pressure above which gaseous combustion is suppressed. It is shown that for practical reactor geometrical confinements, homogeneous combustion is still largely suppressed at p  4 bar even for inlet and wall temperatures as high as 723 and 1250 K, respectively. The lack of appreciable gaseous combustion at elevated pressures is of concern for the reactor thermal management since homogeneous combustion moderates the superadiabatic surface temperatures attained during the heterogeneous combustion of hydrogen.  相似文献   

5.
The catalytic partial oxidation (CPO) of CH4/O2 mixtures diluted with large amounts of H2O and CO2 (up to 43% and 21% vol., respectively) was investigated experimentally and numerically in the pressure range 4 bar  p  10 bar. Experiments were carried out in an optically accessible channel-flow catalytic reactor coated with Rh/ZrO2, and included planar laser induced fluorescence (LIF) of formaldehyde for the assessment of homogeneous (gas-phase) ignition and one-dimensional spontaneous Raman measurements of all major gas-phase species for the evaluation of the heterogeneous (catalytic) processes. Simulations were performed with a full elliptic model that included detailed heterogeneous and homogeneous chemical reaction schemes. Over the reactor length with negligible gas-phase chemistry contribution, the employed heterogeneous reaction scheme provided good agreement to the measured methane consumption and synthesis gas yields, overpredicting mildly the partial over the total oxidation route. It was shown that the added water provided a source of O(s) and OH(s) surface radicals that enhanced the methane conversion and H2 yields and reduced the CO yields. Moreover, the addition of CO2 had a negligible chemical effect on the aforementioned parameters. An increase in pressure from 4 to 10 bar had a minor impact on the methane conversion and hydrogen selectivity. The employed gaseous scheme reproduced the LIF-measured onset of homogeneous ignition, although it underpredicted the extent of the formaldehyde zone ahead of the flame and the flame propagation characteristics at the highest investigated pressure (10 bar).  相似文献   

6.
The pure heterogeneous and the coupled hetero-/homogeneous combustion of fuel-lean propane/air mixtures over platinum have been investigated at pressures 1 bar  p  7 bar, fuel-to-air equivalence ratios 0.23  φ  0.43, and catalytic wall temperatures 723 K  Tw  1286 K. Experiments were performed in an optically accessible catalytic channel-flow reactor and involved 1-D Raman measurements of major gas-phase species concentrations across the reactor boundary layer for the assessment of catalytic fuel conversion and planar laser induced fluorescence (LIF) of the OH radical for the determination of homogeneous ignition. Numerical predictions were carried out with a 2-D elliptic CFD code that included a one-step catalytic reaction for the total oxidation of propane on Pt, an elementary C3 gas-phase chemical reaction mechanism, and detailed transport. A global catalytic reaction step valid over the entire pressure–temperature-equivalence ratio parameter range has been established, which revealed a p0.75 dependence of the catalytic reactivity on pressure. The aforementioned global catalytic step was further coupled to a detailed gas-phase reaction mechanism in order to simulate homogeneous ignition characteristics in the channel-flow reactor. The predictions reproduced within 10% the measured homogeneous ignition distances at pressures p  5 bar, while at p = 7 bar the simulations overpredicted the measurements by 19%. The overall model performance suggests that the employed hetero-/homogeneous chemical reaction schemes are suitable for the design of propane-fueled catalytic microreactors.  相似文献   

7.
The catalytic-rich/gaseous-lean (R/L) combustion concept was investigated experimentally and numerically for syngas fuels with H2:CO volumetric ratios 1:0, 4:1 and 1:2, catalytic-rich stoichiometries φrich = 2–10 (including operation without air), pressure of 8 bar and air preheat of 673 K. Experiments were performed in a subscale R/L burner with optical access to both catalytic-rich and gaseous-lean stages. OH-PLIF monitored the turbulent combustion in the gaseous-lean stage, OH*-chemiluminescence assessed the propensity for homogeneous ignition in the catalytic-rich stage, and exhaust gas analysis provided the NOx and CO emissions. Two-dimensional simulations were carried out for both stages, while a 1-D opposed-jet code modeled the NOx emissions. The exothermicity of the heterogeneous reactions promoted homogeneous ignition and flame anchoring in the upstream parts of the catalytic-rich stage and allowed for complete consumption of the deficient O2 reactant, a process that could not be achieved by the catalytic pathway alone due to transport limitations. Homogeneous combustion in the catalytic-rich stage was beneficial for attaining the highest possible fuel pre-conversion. The catalyst not only initiated gaseous combustion but also mitigated potential NOx emissions from the catalytic-rich stage at the highest pre-conversions (lowest φrich) and highest CO-content mixtures. Two-sided diffusion flames were established in the gaseous-lean stage due to the recirculation of O2-rich combustion products, which was advantageous for the burner compactness. It was shown that cardinal to the R/L concept was the fact that a decreasing φrich led to an increased heat transfer from the catalytic-rich stage to the bypass air, which reduced the enthalpy in the fuel stream of the gaseous-lean stage and thus lowered the peak flame temperatures (by 400 K for H2:CO = 1:0). The reduction in flame temperatures with decreasing φrich led to a six-fold drop in NOx emissions, while CO emissions were less than 5 ppmv.  相似文献   

8.
The effects of NO and NO2 produced by using a plasma jet (PJ) of a N2/O2 mixture on ignition of hydrogen, methane, and ethylene in a supersonic airflow were experimentally and numerically investigated. Numerical analysis of ignition delay time showed that the addition of a small amount of NO or NO2 drastically reduced ignition delay times of hydrogen and hydrocarbon fuels at a relatively low initial temperature. In particular, NO and NO2 were more effective than O radicals for ignition of a CH4/air mixture at 1200 K or lower. These ignition enhancement effects were examined by including the low temperature chemistry. Ignition tests by a N2/O2 PJ in a supersonic flow (M = 1.7) for using hydrogen, methane, and ethylene injected downstream of the PJ were conducted. The results showed that the ignitability of the N2/O2 PJ is affected by the composition of the feedstock and that pure O2 is not the optimum condition for downstream fuel injection. This result of ignition tests with downstream fuel injection demonstrated a significant difference in ignition characteristics of the PJ from the ignition tests with upstream fuel injection.  相似文献   

9.
The hetero-/homogeneous combustion of hydrogen/air mixtures over platinum was investigated experimentally and numerically in a channel-flow configuration at fuel-rich equivalence ratios ranging from 2 to 7, pressures up to 5 bar and wall temperatures 760–1200 K. Experiments involved in situ one-dimensional Raman measurements of major gas-phase species concentrations over the catalyst boundary layer and planar laser induced fluorescence (LIF) of the OH radical, while simulations included an elliptic 2-D model with detailed heterogeneous and homogeneous reaction mechanisms. The employed reaction schemes reproduced the measured catalytic reactant consumption, the onset of homogeneous ignition, and the post-ignition flame shapes at all examined conditions. Although below a critical pressure, which depended on temperature, the intrinsic gas-phase kinetics of hydrogen dictated lower reactivity for the fuel-rich stoichiometries when compared to fuel-lean ones, homogeneous ignition was still more favorable for the rich stoichiometries due to the lower molecular transport of the deficient oxygen reactant that resulted in modest catalytic reactant consumption over the gaseous induction zone. Above the critical pressure, the intrinsic gaseous hydrogen kinetics yielded higher reactivity for the rich stoichiometries, which resulted in vigorous gaseous combustion at pressures up to 5 bar, in contrast to lean stoichiometry studies whereby homogeneous combustion was altogether suppressed above 3 bar. Computations at fuel-rich stoichiometries in practical channel geometries indicated that homogeneous combustion was not of concern for reactor thermal management, since the larger than unity Lewis number of the deficient oxygen reactant confined the flames to the core of the channel, away from the solid walls.  相似文献   

10.
This article investigates the effect of steam on the ignition of single particles of solid fuels in a drop tube furnace under air and simulated oxy-fuel conditions. Three solid fuels, all in the size range 125–150 µm, were used in this study; specifically, a low rank sub-bituminous Colombian coal, a low-rank/high-ash sub-bituminous Brazilian coal and a charcoal residue from black acacia. For each solid fuel, particles were burned at a constant drop tube furnace wall temperature of 1475?K, in six different mixtures of O2/N2/CO2/H2O, which allowed simulating dry and wet conventional and oxy-fuel combustion conditions. A high-speed camera was used to record the ignition process and the collected images were treated to characterize the ignition mode (either gas-phase or surface mode) and to calculate the ignition delay times. The Colombian coal particles ignite predominately in the gas-phase for all test conditions, but under simulated oxy-fuel conditions there is a decrease in the occurrence of this ignition mode; the charcoal particles experience surface ignition regardless of the test condition; and the Brazilian coal particles ignite predominately in the gas-phase when combustion occurs in mixtures of O2/N2/H2O, but under simulated oxy-fuel conditions the ignition occurs predominantly on the surface. The ignition delay times for particles that ignited in the gas-phase are smaller than those that ignited on the surface, and generally the simulated oxy-fuel conditions retard the onset of both gas-phase and surface ignition. The addition of steam decreases the gas-phase and surface ignition delay times of the particles of both coals under simulated oxy-fuel conditions, but has a small impact on the gas-phase ignition delay times when the combustion occurs in mixtures of O2/N2/H2O. The steam gasification reaction is likely to be responsible for the steam effect on the ignition delay times through the production of highly flammable species that promote the onset of ignition.  相似文献   

11.
This paper constitutes an experimental and numerical study, using uncertainty analysis of the most important parameters, to evaluate the mechanism for the combustion of CO + H2 mixtures at high pressures in the range 15-50 bar and temperatures from 950 to 1100 K. Experiments were performed in a rapid compression machine. Autoignition delays were measured for stoichiometric compositions of CO + H2 containing between 0 and 80% CO in the total fuel mixture. The experimental results showed an unequivocal monotonic increase as the proportion of CO in the mixture was raised. Comparisons were made also with the measured ignition delays in mixtures of H2 with increasing dilution by N2, corresponding to the proportions of CO present. These times also increased monotonically, albeit with a greater sensitivity to the extent of dilution than those measured in the CO + H2 mixtures. By contrast, numerical simulations for the same mixtures, based on a kinetic model derived by Davis et al. displayed a qualitative discrepancy as there was virtually no sensitivity of the ignition delay to the changing ratio of CO + H2, certainly up to 80% replacement. No exceptions to this trend were found, despite tests being made using seven other kinetic models for CO + H2 combustion. Global uncertainty analyses were then applied to the Davis et al. model in order to trace the origins of this discrepancy. The analyses took into account the uncertainties in all rate parameters in the model, which is a pre-requisite for evaluation against ignition delay data. It is shown that the reaction rate constant recommended by Baulch et al. for the HO2 + CO reaction, at T ∼ 1000 K, could be up to a factor of 10 too high and that lowering this rate corrected the qualitative anomaly between experiment and numerical prediction.  相似文献   

12.
The ceria-zirconium-modified alumina-supported palladium catalysts are prepared using impregnation method with H2PdCl4 as Pd source, hydrazine hydrate as reducing agent. The physicochemical properties of these catalysts are characterized by BET surface area (BET), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), temperature programmed reduction (H2-TPR) and temperature programmed oxidation (O2-TPO) techniques, and their catalytic activities for the combustion of methane are examined. The results show that the palladium mainly exist in a highly dispersed PdO species on Ce-Zr-rich grains as well as Al2O3-rich grains surfaces, and a stable PdO species due to the strong interaction between PdO and CeO2-ZrO2 on the Ce-Zr/Al2O3 surfaces. The catalytic activity is strongly related to the redox behavior of PdO species highly dispersed on Ce-Zr-rich grains and Al2O3-rich grains surfaces, and the higher the reducibility of the PdO species, the higher the catalytic activity. The presence of Ce-Zr in Pd/Al2O3 catalyst would inhibit the site growth of PdOx particles and decomposition of PdO to Pd0, and the reoxidation property of Pd0 to PdOx is significantly improved, which obviously increases thermal stability and catalytic activity of Pd/Ce-Zr/Al2O3 catalyst for the methane combustion.  相似文献   

13.
Gas-phase and catalytic combustion in heat-recirculating burners   总被引:5,自引:0,他引:5  
An experimental study of a spiral counterflow “Swiss roll” burner was conducted, with emphasis on the determination of extinction limits and comparison of results with and without bare-metal Pt catalyst. A wide range of Reynolds numbers (Re) were tested using propane–air mixtures. Both lean and rich extinction limits were extended with the catalyst, though rich limits were extended much further. With the catalyst, combustion could be sustained at Re as low as 1.2 with peak temperatures as low as 350 K. A heat transfer parameter characterizing the thermal performance of both gas-phase and catalytic combustion at all Re was identified. At low Re, the “lean” extinction limit was actually rich of stoichiometric, and rich-limit had equivalence ratios exceeded 40 in some cases. No corresponding behavior was observed without the catalyst. Gas-phase combustion, in general, occurred in a “flameless” mode near the burner center. With or without catalyst, for sufficiently robust conditions (high Re, near-stoichiometric) not requiring heat recirculation, a visible flame would propagate out of the center, but this flame could only be re-centered if the catalyst were present. Gas chromatography indicated that at low Re, even in extremely rich mixtures, CO and non-propane hydrocarbons did not form. For higher Re, where both gas-phase and catalytic combustion could occur, catalytic limits were slightly broader but had much lower limit temperatures. At sufficiently high Re, catalytic and gas-phase limits merged. It is concluded that combustion at low Re in heat-recirculating burners greatly benefits from catalytic combustion with the proper choice of mixtures that are different from those preferred for gas-phase combustion. In particular, the importance of providing a reducing environment for the catalyst to enhance O2 desorption, especially at low Re where heat losses are severe thus peak temperatures are low, is noted.  相似文献   

14.
本文采用气相-尘埃模型Nautilus研究了星际氧气的演化过程,使用了两种典型初始丰度值下的恒温模型和变化物理条件下的加热模型进行模拟计算. 结果表明,在冷致密云的条件下,CO、O2和H2O达到峰值的时间依赖于氢核密度的多少,其随氢核密度的增大而减小. 在加热模型中,在温度升高后的105年后,氧气的丰度值与观测结果符合较好. 在温度大于30 K后,氧气的稳态丰度值将不再随氢核密度而变化,且大于此温度可以阻止氧气大量的沉降到尘埃表面. 此外,无论在恒温模型还是在加热模型中,低氢核密度更有利于O2的生成.  相似文献   

15.
New doped manganite multiferroics Tb0.95Bi0.05MnO3, Gd0.75Ce0.25Mn2O5, and Eu0.8Ce0.2Mn2O5, which are semiconductors, have been grown and studied. The starting dielectric multiferroics TbMnO3 and RMn2O5 (R = Gd and Eu) have close magnetic and ferroelectric ordering temperatures of 30–40 K. The crystals studied are multiferroics in which states with giant permittivity and ferromagnetism coexist at room temperature. An analysis of the dielectric properties suggests that, at temperatures T ≥ 180 K, these crystals undergo a phase separation involving dynamic periodic alternation of quasi-2D layers of mixed-valence manganese ions, a process accounting for the onset of charge-induced ferroelectricity. At low temperatures (T < 100 K), a small phase volume in the crystals is occupied by as-grown quasi-2D layers containing dopants and carriers. Most of the crystal volume is occupied by the carrier-free dielectric phase. Thermally activated hopping conduction involving carrier self-organization in the crystal matrix with ferroelectric frustrations drives a phase transition to the state of charge-induced ferroelectricity at T ∼ 180 K. Original Russian Text ? V.A. Sanina, E.I. Golovenchits, V.G. Zalesskiĭ, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 5, pp. 874–882.  相似文献   

16.
An experimental investigation of the oxidation of hydrogen diluted by nitrogen in presence of CO2 was performed in a fused silica jet-stirred reactor (JSR) over the temperature range 800-1050 K, from fuel-lean to fuel-rich conditions and at atmospheric pressure. The mean residence time was kept constant in the experiments: 120 ms at 1 atm and 250 ms at 10 atm. The effect of variable initial concentrations of hydrogen on the combustion of methane and methane/carbon dioxide mixtures diluted by nitrogen was also experimentally studied. Concentration profiles for O2, H2, H2O, CO, CO2, CH2O, CH4, C2H6, C2H4, and C2H2 were measured by sonic probe sampling followed by chemical analyses (FT-IR, gas chromatography). A detailed chemical kinetic modeling of the present experiments and of the literature data (flame speed and ignition delays) was performed using a recently proposed kinetic scheme showing good agreement between the data and this modeling, and providing further validation of the kinetic model (128 species and 924 reversible reactions). Sensitivity and reaction paths analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in absence and in presence of additives (CO2 and H2). The kinetic reaction scheme proposed helps understanding the inhibiting effect of CO2 on the oxidation of hydrogen and methane and should be useful for gas turbine modeling.  相似文献   

17.
Measurements of magnetic susceptibility χ as a function of temperature T and of magnetisation M as a function of applied magnetic field H at a number of fixed temperatures were made on polycrystalline samples of Cu2FeGeSe4. The χ versus T data show that an antiferromagnetic transition occurs at 20 K and that a second transition occurs at 8 K, indicating a transition to weak ferromagnetic form. The M versus H curves indicated that at all temperatures below 70 K bound magnetic polarons (BMP) occur, in the paramagnetic, antiferromagnetic and weak ferromagnetic ranges. Below 8 K, the M versus H curves exhibited magnetic hysteresis, and this is attributed to the interaction of the BMPs with tetragonally anisotropic matrix. The B versus H curves were well fitted by a Langevin-type of equation, and the variation of the fitting parameters determined as a function of temperature. These showed that above 20 K the total BMP magnetisation fell almost linearly with increasing temperature and effectively disappeared at 70 K. The number of BMPs remained practically constant with temperature having a mean value of 6.55×1018/cm3. The analysis gave a value of 213 μB for the average magnetic moment of a BMP, corresponding to 42.4 Fe atoms. Using a simple spherical model, this gives the radius of a BMP as 12.0 Å.  相似文献   

18.
Magnetic hysteresis behavior of the oxide spinel MnCo2O4 has been studied at different temperatures below its Tc≈184 K. Normal hysteresis behavior is observed down to 130 K whereas below this temperature the initial magnetization curve, at higher magnetic fields, lies outside the main loop. No related anomaly is observed in the temperature variation of magnetization or coercivity. However, the anisotropy field overcomes the coercivity below 130 K. The unusual magnetic hysteresis behavior of MnCo2O4, at low temperatures, may be associated with irreversible domain wall movements due to the rearrangement of the valence electrons.  相似文献   

19.
The structure, orientation, and the response of electroresistance to magnetic field H and varying temperature T have been studied for 30-nm-thick La0.67Ba0.33MnO3 (LBMO) films. The deviation of the [001] direction in manganite layers from the normal to the plane of the (LaAlO3)0.29 + (SrAl0.5Ta0.5O3)0.71 substrate strictly corresponds to the vicinal angle of the latter. The minimum yield determined from 227-keV proton scattering spectra is 0.025, signifying a high order of the cationic sublattice in the films. The biaxial compression of stable nuclei of the manganite phase affects their stoichiometry, thus contributing to the depletion of LBMO films in the alkaline-earth element. The maximum electroresistance values have been observed in the films grown at T max ≈ 320 K, a temperature about 20 K lower than the Curie temperature of the corresponding bulk single crystals, and the maximum magnetoresistance (MR ≈ −0.42, μ0 H = 2 T) occurs at T ≈ 300 K. At low temperatures (T < T max/3) and μ0 H < 0.45 T, the electroresistance response of LBMO films to a magnetic field materially depends on the anisotropic magnetoresistance and the intensity of hole scattering from domain walls; when μ0 H > 0.5 T, the major current-carrier relaxation mechanism is the interaction with magnons.  相似文献   

20.
O2/H2O combustion, as a new evolution of oxy-fuel combustion, has gradually gained more attention recently for carbon capture in a coal-fired power plant. The physical and chemical properties of steam e.g. reactivity, thermal capacity, diffusivity, can affect the coal combustion process. In this work, the ignition and volatile combustion characteristics of a single lignite particle were first investigated in a fluidized bed combustor under O2/H2O atmosphere. The flame and particle temperatures were measured by a calibrated two-color pyrometry and pre-buried thermocouple, respectively. Results indicated that the volatile flame became smaller and brighter as the oxygen concentration increased. The ignition delay time of particle in dense phase was shorter than that in dilute phase due to its higher heat transfer coefficient. Also, the volatile flame was completely separated from particles (defined as off-flame) in dense phase while the flame lay on the particle surface (defined as on-flame) in dilute phase. The self-heating of fuel particles by on-flame in dilute phase was more obvious than that in dense phase, leading to earlier char combustion. At low oxygen concentration, the flame in the H2O atmosphere was darker than that in the N2 atmosphere because the heat capacity of H2O is higher than that of N2. With the increase of oxygen concentration, the flame temperature in the O2/H2O atmosphere was dramatically enhanced rather than that in the O2/N2 atmosphere, where the diffusion rate of oxygen in O2/N2 atmosphere became the dominant factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号