首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
液体横向射流在气膜作用下的破碎过程   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究液体横向射流在气膜作用下的破碎过程,采用背景光成像技术及VOF TO DPM方法进行了实验研究和仿真研究,模拟介质为水和空气.研究结果表明,液体射流在气膜作用下主要存在两种破碎过程:柱状破碎和表面破碎.Rayleigh-Taylor(R-T)不稳定性产生的表面波是液体射流发生柱状破碎的主要原因,气流穿透表面波的波谷导致射流柱破碎,破碎后的液丝沿流向逐渐发展呈带状分布.Kelvin-Helmholtz(K-H)不稳定性产生的表面波是液体射流发生表面破碎的主要原因,液丝和液滴从射流表面剥离.局部动量比对液体横向射流的破碎过程具有重要影响,当局部动量比较低时,液体射流的破碎由K-H不稳定性主导;随着局部动量比的增大液体射流的破碎逐渐由R-T不稳定性主导.液体射流的破碎长度及穿透深度均随局部动量比的增大而增大.  相似文献   

2.
《中国物理 B》2021,30(5):57502-057502
The paper aims at modeling and simulating the atomization process of the close-coupled ring-hole nozzle in vacuum induction gas atomization(VIGA) for metallic powder production. First of all, the primary atomization of the ring-hole nozzle is simulated by the volume of fluid(VOF) coupled large eddy simulation(LES) model. To simulate the secondary atomization process, we use the method of selecting the droplet sub-model and the VOF model. The results show that the ring-hole nozzle forms a gas recirculation zone at the bottom of the delivery tube, which is the main reason for the formation of an annular liquid film during the primary atomization. In addition, the primary atomization process of the ring-hole nozzle consists of three stages: the formation of the serrated liquid film tip, the appearance and shedding of the ligaments, and the fragmentation of ligaments. At the same time, the primary atomization mainly forms spherical droplets and long droplets, but only the long droplets can be reserved and proceed to the secondary atomization. Moreover,increasing the number of ring holes from 18 to 30, the mass median diameter(MMD, d50) of the primary atomized droplets decreases first and then increases, which is mainly due to the change of the thickness of the melt film. Moreover, the secondary atomization of the ring-hole nozzles is mainly in bag breakup mode and multimode breakup model, and bag breakup will result in the formation of hollow powder, which can be avoided by increasing the gas velocity.  相似文献   

3.
在低速来流条件下,针对前缘位置嵌有合成射流/合成双射流激励器的机翼的水滴撞击特性开展了数值模拟研究,基于Fluent软件,采用Euler气液两相模型和欧拉壁面液膜(Eulerian wall film,EWF)模型,得到的计算结果表明:在合成射流或合成双射流的主动控制下,阻挡了机翼前缘等积冰重点防护区域内的水滴撞击,从而大幅降低了该区域的结冰强度.其机理是:在高频合成射流的作用下,机翼前缘上游附近形成了一对稳定的闭合回流区,形成了水滴的"真空区域".由于回流区内部水滴速度和质量分数较低,改变了机翼前缘水滴运动轨迹和水滴收集率分布,能够减少机翼前缘结冰程度并改变冰形,起到了虚拟气动外形的作用.   相似文献   

4.
5.
One of the major concerns in combustion engines is the sensitivity of engine performance to fuel properties. Recent works have shown that even slight differences in fuel properties can cause significant changes in performance and emission of an engine. In order to design the combustion engines with multi-fuel flexibilities, the precise assessment of fuel sensitivity on liquid jet atomization process is a prerequisite since the resulting fuel/air mixture is critical to the subsequent combustion process. The present study is focusing on the effect of physical fuel properties, mostly viscosity difference, on the breakup process of the liquid jet injected into still air. Two different jet fuels, CAT-A2 and CAT-C3, are considered here as surrogates for a fossil-based fuel and a bio-derived high-viscosity alternative fuel. The simulations are performed using the volume-of-fluid (VoF) interface tracking method coupled to Lagrangian particle method in order to capture the breakup instabilities of jets and the resulting droplets. The investigations take the actual geometry of the injector into account to resolve the unsteady flow phenomena inside the nozzle that impact the turbulence transition and atomization. The simulation results are compared to the experimental measurement using X-ray radiography. Both simulation and X-ray measurements consistently describe the effects of different fuels on the fundamental properties of atomization including the breakup length, transverse liquid volume fraction and the droplet sauter-mean-diameter. The application of a Detailed Numerical Simulation approach complemented by unique X-ray diagnostics is novel and providing new understanding and research directions in engine spray dynamics.  相似文献   

6.
为了更加深入了解超燃冲压发动机燃烧室中的燃料雾化机理,对来流Mach数为1.94的超声速气流中液体横向射流的雾化过程进行了数值模拟研究.计算采用Euler-Lagrange方法,液滴二次破碎模型采用K-H/R-T模型.计算结果表明:考虑液滴二次破碎时,采用雾化锥模型获得的射流穿透深度以及液滴速度分布与实验结果符合得很好...  相似文献   

7.
Two perforated plates with different solidity ratios, S=50% and 67%, were used to investigate the effect of the velocity fluctuations of a subsonic gaseous crossflow on the spray characteristics of a liquid jet including droplet size and velocity distributions. The experiments were conducted over a range of jet-to-crossflow momentum flux ratio of q=16.5-172, and two gas Weber numbers of ?Weg=2.7 and 5.9, corresponding to the enhanced capillary breakup and bag breakup regimes, respectively. The experimental results of this study revealed that the distribution of droplets size associated with a turbulent and a uniform crossflow for each specific breakup regime were approximately identical. The bimodal and single peak distributions of droplets size, respectively, associated with enhanced capillary and bag breakup regimes were generally consistent with the literature reports. However, the transition of the liquid primary breakup regime from enhanced capillary to bag breakup mode was delayed in a turbulent crossflow compared to its uniform counterpart. The general behavior of droplets size-velocity profiles were also consistent with the literature reports. Nonetheless, complex variations in the distribution of droplets velocity when changing the crossflow turbulence intensity were observed and linked with the presence of instabilities on the liquid jet's surface. Finally, the present experiments allowed shedding more light on the reason why the breakup mechanisms of a liquid jet in a conventional uniform crossflow should not be generalized to predict the distinct breakup process of a liquid jet in a turbulent crossflow.  相似文献   

8.
Due to the high surface tension and high conductivity, water is unsuitable for electrohydrodynamic (EHD) atomization using a DC electric field in air. The high local electric field, that is required to atomize water, is likely to generate corona discharge and consequently destabilize the atomization process. This study describes a novel low voltage EHD spray nozzle that can be used to atomize water and weak saline solutions in the stable cone jet mode. The properties of the atomization have been investigated together with the generated droplet size distribution. The nozzle operates at very low flow rates (0.5–4.0 μl/min). Due to the high dielectric constant of water and the low flow rate, the atomization takes place outside the applicability range of the scaling laws. The experimental results show that the droplet size is approximately constant when the flow rate is increased from 0.5 to 4.0 μl/min. The atomization of water was numerically simulated using computational fluid dynamics (CFD). The simulation results agree reasonably well with the experimental results with respect to the liquid cone shape and droplet size.  相似文献   

9.
The results of theoretical and experimental investigations of the interaction of a gas jet with the surface of a viscous liquid are reported. Relations are derived for calculating the force exerted by the gas jet on the liquid surface. A dependence of the gas jet compression ratio in the nozzle outlet on the pressure in front of the nozzle is revealed. The values of the shape factor for the indentation formed by the gas jet on the surface of the liquid are determined for various diameters of the indentation and the distances between the outlet hole of the nozzle and the liquid surface. The theoretical conclusions formulated here are confirmed by the results of experiments.  相似文献   

10.
We simulate the gas-atomization process of a close-coupled annular nozzle for vacuum induction gas atomization at a three-dimensional scale.Moreover,the relationship between the simulated droplet type and experimentally metallic powder is established by comparing the morphology of droplets with powders.Herein,the primary atomization process is described by the volume-of-fluid(VOF)approach,whereas the prediction of powder diameter after secondary atomization is realized by the VOF-Lagrangian method.In addition,to completely reflect the breaking and deformation process of the metallic flow,we employ the VOF model to simulate the secondary atomization process of a single ellipsoidal droplet.The results show that the primary atomization process includes the formation of surface liquid film,appearance of serrated ligaments,and shredding of ligaments.Further,gas recirculation zone plays an important role in formation of the umbrella-shaped liquid film.The secondary atomization process is divided into droplet convergence and dispersion stages,and the predicted powder diameter is basically consistent with the experiment.In general,the four main powder shapes are formed by the interaction of five different typical droplets.  相似文献   

11.
Spray characteristics and their spatial distribution have been investigated experimentally for sprays generated by the breakup of thin liquid sheets in co‐flowing air streams. The spray characteristics such as droplet mean and fluctuation velocity and Sauter mean diameter have been measured by using phase Doppler anemometry under various liquid and air flow conditions at the nozzle exit. The results show that at a given spray cross section the droplet axial mean velocity has a maximum value at the spray center, and decreases towards the edge of the spray; whereas the Sauter mean diameter has a minimum value at the center and increases monotonically towards the spray periphery. Data analysis indicates that sufficiently downstream of the nozzle exit the droplet mean velocity attains a jet‐like self‐similar distribution in the transverse direction, and such universal distribution is also observed for the turbulent fluctuation velocity and turbulent intensity, although it is achieved further downstream compared to the mean velocity profile. The Sauter mean diameter at the spray center has a complex variation in the downstream direction due to secondary atomization at high air velocity near the nozzle exit and droplet entrainment, migration and possible coalescence farther downstream.  相似文献   

12.
The present study numerically investigates liquid-jet characteristics of acoustic cavitation during emulsification in water/gallium/air and water/silicone oil/air systems. It is found that a high-speed liquid jet is generated when acoustic cavitation occurs near a minute droplet of one liquid in another. The velocity of liquid jet significantly depends on the ultrasonic pressure monotonically increasing as the pressure amplitude increases. Also, the initial distance between cavitation bubble and liquid droplet affects the jet velocity significantly. The results revealed that the velocity takes maximum values when the initial distance between the droplet and cavitation bubble is moderate. Surprisingly, the liquid jet direction was found to depend on the droplet properties. Specifically, the direction of liquid jet is toward the droplet in the case of water/gallium/air system, and vice versa the jet is directed from the droplet in the case of water/silicone oil/air system. The jet directionality can be explained by location of the high-pressure spot generated during the bubble contraction.  相似文献   

13.
《中国物理 B》2021,30(5):54702-054702
This paper aims at studying the influence mechanism of gas temperatures(300 K, 400 K, 500 K, and 600 K) on gas atomization by simulating the integral atomization process of the close-coupled nozzle in vacuum induction gas atomization(VIGA). The primary atomization is simulated by the volume of fluid(VOF) approach, and the second atomization is studied by the discrete phase model(DPM) combined with the instability breakage model. The results show that, at an increased gas temperature, the influences of gas–liquid contact angle and gas temperature in the recirculation zone on the primary atomization are virtually negligible. However, increasing the gas temperature will increase the gas–liquid relative velocity near the recirculation zone and decrease the melt film thickness, which are the main reasons for the reduced mass median diameter(MMD, d50) of primary atomized droplets. During the secondary atomization, increasing the gas temperature from 300 K to 600 K results in an increase in the droplet dispersion angle, which is beneficial to the formation of spherical metal powder. In addition, increasing the gas temperature, the positive effect of gas–liquid relative velocity increase on droplets refinement overweighs the negative influence of the GMR decrease, resulting in the reduced MMD and diameter distribution interval. From the analysis of the atomization mechanism, the increase in atomization efficiency caused by increasing the temperature of the atomizing gas, including primary atomization and secondary atomization, is mainly due to the increase in the gas drag force difference between the inner and outer sides of the annular liquid film.  相似文献   

14.
《Physics letters. A》2014,378(5-6):539-548
Experiments involving heating of liquid droplets which are acoustically levitated, reveal specific modes of oscillations. For a given radiation flux, certain fluid droplets undergo distortion leading to catastrophic bag type breakup. The voltage of the acoustic levitator has been kept constant to operate at a nominal acoustic pressure intensity, throughout the experiments. Thus the droplet shape instabilities are primarily a consequence of droplet heating through vapor pressure, surface tension and viscosity. A novel approach is used by employing Legendre polynomials for the mode shape approximation to describe the thermally induced instabilities. The two dominant Legendre modes essentially reflect (a) the droplet size reduction due to evaporation, and (b) the deformation around the equilibrium shape. Dissipation and inter-coupling of modal energy lead to stable droplet shape while accumulation of the same ultimately results in droplet breakup.  相似文献   

15.
Large-eddy simulation of an atomizing spray issuing from a gas-turbine injector is performed. The filtered Navier–Stokes equations with dynamic subgrid scale model are solved on unstructured grids to compute the swirling turbulent flow through complex passages of the injector. The collocated grid, incompressible flow algorithm on arbitrary shaped unstructured grids developed by Mahesh et al. (J. Comp. Phys. 197 (2004) 215–240) is used in this work. A Lagrangian point-particle formulation with a stochastic model for droplet breakup is used for the liquid phase. Following Kolmogorov’s concept of viewing solid particle-breakup as a discrete random process, the droplet breakup is considered in the framework of uncorrelated breakup events, independent of the initial droplet size. The size and number density of the newly produced droplets is governed by the Fokker–Planck equation for the evolution of the pdf of droplet radii. The parameters of the model are obtained dynamically by relating them to the local Weber number and resolved scale turbulence properties. A hybrid particle-parcel is used to represent the large number of spray droplets. The predictive capability of the LES together with Lagrangian droplet dynamics models to capture the droplet dispersion characteristics, size distributions, and the spray evolution is examined in detail by comparing it with the spray patternation study for the gas-turbine injector. The present approach is computationally efficient and captures the global features of the fragmentary process of liquid atomization in complex configurations.  相似文献   

16.
何博  丰松江  聂万胜 《计算物理》2013,30(2):194-202
考虑气相非稳态及液滴内部环流,建立运动液滴非稳态蒸发燃烧模型.模型采用动网格方法精确追踪液滴表面位置,采用守恒方程组更新液滴表面边界条件.根据单步全局化学反应机理,仿真研究正庚烷燃料液滴在不同对流速度下的火焰形态及燃烧.结果表明:运动液滴内部环流使液滴内部低温区向环流中心移动.当液滴运动速度大于某临界值后,火焰形态由包覆火焰转变为尾迹火焰.包覆火焰的富燃区范围、高温区范围及燃烧速率明显较尾迹火焰大;包覆火焰的液滴表面温度及表面蒸发流率分布也明显不同于尾迹火焰.  相似文献   

17.
The distribution of sizes and velocities of droplets initially formed in sprays is an important piece of information needed in the spray modelling, because it defines the initial condition of the spray droplets in the predictive calculations of the downstream two‐phase flow fields. A predictive model for the initial droplet size and velocity distributions in sprays is formulated in this study. The present model incorporates both the deterministic and the stochastic aspect of spray formation process. The deterministic aspect takes into account of the unstable wave motion before the liquid bulk breakup through the linear and nonlinear instability analysis, which provides information for the liquid bulk breakup length, the mass‐mean diameter and a prior distribution for the droplet sizes corresponding to the unstable wave growth of various wavelengths. The stochastic aspect deals with the final stage of droplet formation after the liquid bulk breakup by statistical means through the maximum entropy principle based on Bayesian entropy. The two sub‐models are coupled together by the various source terms signifying the liquid‐gas interaction, the mass mean diameter and the prior distribution based on the instability analysis. The initial droplet size and velocity distributions are measured experimentally by phase‐Doppler interferometry for sprays generated by a planar research nozzle and a practical gas turbine airblast nozzle. For the two nozzles, the liquid bulk sheet is formed before its breakup in a coflowing air stream. It is found that the model predictions are in satisfactory agreement with the experimental data for all the cases measured. Hence the present model may be applied to a variety of practical sprays to specify the initial conditions for the spray droplets formed in practical spray systems.  相似文献   

18.
We present a technique for the study of liquid jets in an environmental scanning electron microscope (ESEM). By using a two-fluid stream consisting of a water inner core and a co-flowing outer gas sheath, we are able to produce liquid streams of sufficiently low flow rate to be compatible with ESEM vacuum requirements. We have recorded ESEM images of water jets down to 700 nm diameter. Details of the jet structure, such as the point of jet breakup and size and shape of the jet cone, can be measured with ESEM to far greater accuracy than with optical microscopy. ESEM imaging of liquid jets offers a valuable research tool for the study of aerosol production, combustion processes, ink-jet generation, and many other attributes of micro- and nanojet systems.  相似文献   

19.
On the basis of a volume of fluid(VOF) liquid/liquid interface tracking method, we apply a two-dimensional model to investigate the dynamic behaviors of droplet breakup through a splitting microchannel. The feasibility and applicability of the theoretical model are experimentally validated. Four flow regimes are observed in the splitting microchannel, that is, breakup with permanent obstruction, breakup with temporary obstruction, breakup with tunnels, and non-breakup. The results indicate that the increase of the capillary number Ca provides considerable upstream pressure to accelerate the droplet deformation, which is favorable for the droplet breakup. The decrease of the droplet size contributes to its shape changing from the plug to the sphere, which results in weakening droplet deformation ability and generating the nonbreakup flow regime.  相似文献   

20.
均匀液滴氧发生器液流破断的线性分析   总被引:1,自引:1,他引:0  
 在均匀液滴氧发生器的研究过程中,液滴的形成是关键技术。利用压电换能器对液流施加扰动,初始扰动沿液流表面呈指数增长,直到将液流夹断生成液滴。通过理论分析,发现在影响液流表面增长率的诸多参数中,碱性过氧化氢溶液(BHP)表面张力的增加和液体分配板板孔直径的减小能够增大扰动增长率,其他参数的改变对增长率的影响非常小。通过分析还发现,BHP液体的喷射流速不同,要取得最大增长率的外界扰动频率也随之变化,外界施加扰动的频率随液流喷射流速的增大而增大。这些结果为均匀液滴氧发生器的实验研究提供有力的参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号