首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computational fluid dynamics (CFD) modeling of the gas–solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian–Eularian method with the kinetic theory of granular flow is used to solve the gas–solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle–wall restitution coefficient. The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operating conditions of the CFB riser.  相似文献   

2.
Experimental investigations have been reported on steady state natural convection from the outer surface of vertical rectangular and square ducts in air. Seven ducts have been used; three of them have a rectangular cross section and the rest have square cross section. The ducts are heated using internal constant heat flux heating elements. The temperatures along the vertical surface and the peripheral directions of the duct wall are measured. Axial (perimeter averaged) heat transfer coefficients along the side of each duct are obtained for laminar and transition to turbulent regimes of natural convection heat transfer. Axial (perimeter averaged) Nusselt numbers are evaluated and correlated using the modified Rayleigh numbers for laminar and transition regime using the vertical axial distance as a characteristic length. Critical values of the modified Rayleigh numbers are obtained for transition to turbulent. Furthermore, total overall averaged Nusselt numbers are correlated with the modified Rayleigh numbers and the area ratio for the laminar regimes. The local axial (perimeter averaged) heat transfer coefficients are observed to decrease in the laminar region and increase in the transition region. Laminar regimes are obtained at the lower half of the ducts and its chance to appear decreases as the heat flux increases.  相似文献   

3.
A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is used to solve the gas-solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle-wall restitution coefficient.The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operatin~ conditions of the CFB riser.  相似文献   

4.
We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pressure distributions along the wall of the riser were measured. Additional measurements from a smaller pseudo-2D riser (Kallio et al., 2009; Shah et al., 2012) were used to analyze horizontal solids volume fraction profiles. The experimental data were compared with simulation results carried out using an Euler–Euler approach. A mesh sensitivity study was conducted for numerical simulations and effects associated with simplifying real 3D geometry to a 2D model were examined. In addition, the effect of using an algebraic equation to represent the granular temperature versus a full partial differential equation also was examined for numerical simulations. Results showed small but significant near-wall sensitivity of the flow variables to mesh size. Substantial differences in mean pressure, solids distribution, and solid velocities were obtained, when 2D and 3D simulation results were compared. Finally, applying the simplified granular temperature equation for turbulent fluidization and for dilute-phase transport can lead to incorrect predictions in models.  相似文献   

5.
 Velocity statistics along the stagnation line of an axi-symmetric wall stagnating turbulent flow are studied experimentally. A low turbulence, uniform air flow from a nozzle type air supply with an exit diameter of 50 mm stagnates at a wall located 50 mm downstream. A flow velocity is set to 3 m/s, 10 mm downstream from the exit of the air supply. Instantaneous values of streamwise and radial velocities are measured by laser-Doppler velocimetry. The turbulence level in the air flow is changed by use of turbulence generator. When the turbulence generator is not installed in the air supply, the mean velocity profile in the streamwise direction fits well with that of a laminar viscous flow with the rms value of velocity fluctuations low near the wall. With the turbulence generator installed, a significant turbulence structure appears near the wall. When the wall is approached, the rms value of velocity fluctuations in the streamwise direction decreases monotonically while the profile of the rms value in the radial direction reaches a maximum near the wall. The increase in the rms value of velocity fluctuations in the radial direction near the wall is attributed to the bi-modal histogram of the fluctuating velocity in the radial direction. Near the wall, the instantaneous stagnation streamline fluctuates and the probability of the mean location of the stagnation point reaches a maximum not at the stagnation line but on a circle around the stagnation line, resulting in the bi-modal histogram. Turbulence statistics, the rms value of velocity fluctuation and the turbulent kinetic energy, can be normalized successfully by similarity parameters based on the strain rate and the reference turbulent kinetic energy introduced by Champion and Libby. Received: 7 April 1995/Accepted: 27 September 1996  相似文献   

6.
With the development of current energy economy, it is necessary to improve the product distribution of fluid catalytic cracking process, which is achieved by a riser reactor with double-level of nozzles. The new riser is constructed by adding a level of secondary nozzle 0.5 m below the main nozzle of traditional riser. This paper investigates the gas-solids flow and oil-catalyst matching feature based on the optical fiber and tracer technologies. According to the distribution of solids holdup, particle velocity and dimensionless jet concentration, the feedstock injection zone can be divided into the upstream flow control region, the main flow control region, and the secondary flow control region in the radial direction. The size of the regions is changed by the jet gas velocity and axial height. There is a poor match of secondary nozzle jet to particles below the main nozzle. The jet gas from secondary nozzles can improve the matching effect of oil-catalyst near the wall and reduce the probability of coking above the main nozzle.  相似文献   

7.
稠密气固两相流各向异性颗粒相矩方法   总被引:1,自引:0,他引:1  
基于气体分子动力学和颗粒动理学方法,考虑颗粒速度脉动各向异性,建立颗粒相二阶矩模型.应用初等输运理论,对三阶关联项进行模化和封闭.考虑颗粒与壁面之间的能量传递和交换,建立颗粒相边界条件模型.采用Koch等计算方法模拟气固脉动速度关联矩.考虑气体-颗粒间相互作用,建立稠密气体-颗粒流动模型.数值模拟提升管内气固两相流动特性,模拟结果表明提升管内颗粒相湍流脉动具有明显的各向异性.预测颗粒速度、浓度和颗粒脉动速度二阶矩与Tartan等实测结果相吻合.模拟结果表明轴向颗粒速度脉动强度约为平均颗粒相脉动强度的1.5倍,轴向颗粒脉动能大约是径向颗粒脉动能3.0倍.  相似文献   

8.
The behavior of a non-buoyant circular water jet discharged from a contraction nozzle was experimentally investigated. In this experiment, the Reynolds number of the jet, based on the mean velocity results obtained by particle image velocimetry (PIV), ranged from 177 to 5,142. From the experimental results, we found that the cross-sectional profile of the axial velocity for a laminar flow near the nozzle did not show a top-hat distribution, whereas the profiles with Reynolds number higher than 437 were almost top-hat. The length of the zone of flow establishment (ZFE) was found to decrease with increasing Reynolds number. The measured centerline velocity decayed more rapidly and, consequently, approached the theoretical equation earlier near the nozzle as the Reynolds number increased. The decay constant for the centerline velocity of the turbulent cases was relatively lower than that discovered in theory. It is assumed that this probably resulted from the use of the contraction nozzle. Verifying the similarity of the lateral velocity profiles demonstrated that the Gaussian curve was properly approximated only for the turbulent jets and not for the laminar or transitional flows. The jet half width seldom grew for the laminar or transitional flows, whereas it grew with increasing axial distance for the turbulent flows. The spreading rates for the turbulent flows gradually decreased with increasing Reynolds number. The normalized turbulence intensity along the jet centerline increased more rapidly with the axial distance as the Reynolds number increased, and tended to the constant values proposed by previous investigators. The Reynolds shear stress levels were also found to increase as the Reynolds number increased for the turbulent jets.  相似文献   

9.
Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results show that the Schiller–Naumann drag model underestimated the local gas holdup at lower superficial gas velocity whereas the Tomiyama drag model overestimated that at higher superficial gas velocity. By contrast, the dual-bubble-size (DBS)-local drag model gave more reasonable radial and axial distributions of gas holdup in all cases. The reason is that the DBS-local drag model gave correct values of the lumped parameter, i.e., the ratio of the drag coefficient to bubble diameter, for varying operating conditions and radial positions. This ratio is reasonably expected to decrease with increasing superficial gas velocity and be smaller in the center and larger near the wall. Only the DBS-local drag model correctly reproduced these trends. The radial profiles of the axial velocity of the liquid and gas predicted by the DBS-local model also agreed well with experimental data.  相似文献   

10.
To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet,a cold model was developed for the integrated riser reactor combining the gas-solid distributor with the fluidized bed.Constraints,related to the gas-solid distributor and the upper fluidized bed,imposed on the particle flow in the riser outlet region,were investigated experimentally.The experimental results showed that with increasing superficial gas velocity,these constraints have strong influences on particle flow behavior,the particle circulation flux in the riser,and the height of the static bed material of the upper fluidized bed.When the constraints have greater prominence,the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases,the rate of decrease being proportional to the constraint strength.Along the radial direction of the outlet section,the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then,with increasing constraint strength,gradually extends to the whole section from the inner wall.Based on the experimental data,an empirical model describing the constraint strength was established.The average relative error of the model is within 7.69%.  相似文献   

11.
A periodic transient test technique based on the axial dispersion model is proposed for the determination of both heat transfer coefficients and axial dispersion coefficients in heat exchangers. The model uses a parameter called the axial dispersive Peclet number to account for the deviation of the flow pattern from ideal plug flow. It takes both axial dispersion in the fluid and axial heat conduction in the wall into account and is solved analytically by means of a complex Fourier transform. Experiments conducted on dented copper tubes show that axial dispersion has a significant effect on the dynamic temperature response of a heat exchanger.  相似文献   

12.
The steady-state conjugated turbulent heat transfer with axial conduction in the wall and convection boundary conditions is solved with the generalized integral transform technique for the flow of Newtonian fluid in parallel-plate duct. A lumped wall model that neglects transverse temperature gradients in the solid but that takes into account the axial heat conduction along the wall is adopted. Highly accurate results are presented for the fluid bulk and wall temperatures and Nusselt number. The effects of the conjugation parameter, Biot number, and the dimensionless channel length on Nusselt number and fluid bulk and wall temperatures are systematically investigated.  相似文献   

13.
In this paper large-eddy simulation is used to study buoyancy-induced flow in a rotating cavity with an axial throughflow of cooling air. This configuration is relevant in the context of secondary air systems of modern gas turbines, where cooling air is used to extract heat from compressor disks. Although global flow features of these flows are well understood, other aspects such as flow statistics, especially in terms of the disk and shroud boundary layers, have not been studied. Here, previous work for a sealed rotating cavity is extended to investigate the effect of an axial throughflow on flow statistics and heat transfer. Time- and circumferentially-averaged results reveal that the thickness of the boundary layers forming near the upstream and downstream disks is consistent with that of a laminar Ekman layer, although it is shown that the boundary layer thickness distribution along the radial direction presents greater variations than in the sealed cavity case. Instantaneous profiles of the radial and azimuthal velocities near the disks show good qualitative agreement with an Ekman-type analytical solution, especially in terms of the boundary layer thickness. The shroud heat transfer is shown to be governed by the local centrifugal acceleration and by a core temperature, which has a weak dependence on the value of the axial Reynolds number. Spectral analyses of time signals obtained at selected locations indicate that, even though the disk boundary layers behave as unsteady laminar Ekman layers, the flow inside the cavity is turbulent and highly intermittent. In comparison with a sealed cavity, cases with an axial throughflow are characterised by a broader range of frequencies, which arise from the interaction between the laminar jet and the buoyant flow inside the cavity.  相似文献   

14.
The local solids holdup and local particle velocity in a Countercurrent Liquid-upward and Solids-downward Fluidized Bed (CCLSFB) were investigated in details using optical fiber probes with two different models in a Plexiglas column of 1.5 m in height and 7.0 cm in inner diameter. A new flow regime map including fluidized bed, transition, and flooding regimes was established. The axial solids holdup distribution is almost uniform at low liquid velocity and/or solids flowrate and becomes less uniform with higher solids holdup at the top of the column after the operating liquid velocity is reaching the flooding velocity. The radial solids holdup profile is also nearly flat with a slightly lower solids holdup in the near-wall region at low liquid velocity and solids flowrate but becomes nonuniform as the operating liquid velocity approaches the flooding velocity. Two equations were also proposed to correlate radial local solids holdups. The descending particle velocity in CCLSFB increases with the decrease of the liquid velocity and the increase of the solids flowrate. A generally uniform particle velocity distribution was found in the axial direction, as well as in the radial direction except for a small decrease near the wall. These results on the local solids flow structure would provide basic information and theoretical supports for the design and industrial application of CCLSFB.  相似文献   

15.
A single-shot laser Mie scattering technique is used to measure the instantaneous radial distributions of seed particles in the early development zone of turbulent jets with various bulk densities issuing into a slow coflowing air stream. Instantaneous radial profiles of mixture fraction are derived from the measured distributions with either the jet fluid or only the coflow air seeded, depending on the investigated zone. Radial gradients and autocorrelation profiles are analyzed to study the scalar dissipation and the mixing length scale respectively. Self-similar behaviour is investigated by plotting the centreline scalar decay as a function of a reduced abscissa, which accounts for the axial variation of the jet density in its early development. As the density is simultaneously derivable from the mixture fraction data, direct comparisons between Favre and Reynolds averaged values are obtained which show very significant differences in the near field.  相似文献   

16.
A fully implicit upwind finite difference numerical scheme has been proposed to investigate the characteristics of thermal entrance heat transfer in laminar pipe flows subject to a step change in ambient temperature. In order to demonstrate the results more clearly, a modified Nusselt number is introduced. The unsteady axial variations of modified Nusselt number, bulk fluid temperature, and wall temperature and the transient temperature profiles at certain axial locations are presented graphically for various outside heat transfer coefficients. The effects of the outside heat transfer coefficient on the heat transport processes in the flow are examined in detail. The results can be comprehensively explained by the interaction between the upstream convective heat transfer and the diffusion heat transfer in the radial direction. Steady state is reached when the axial convection balances the radial diffusion.  相似文献   

17.
To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet, a cold model was developed for the integrated riser reactor combining the gas–solid distributor with the fluidized bed. Constraints, related to the gas–solid distributor and the upper fluidized bed, imposed on the particle flow in the riser outlet region, were investigated experimentally. The experimental results showed that with increasing superficial gas velocity, these constraints have strong influences on particle flow behavior, the particle circulation flux in the riser, and the height of the static bed material of the upper fluidized bed. When the constraints have greater prominence, the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases, the rate of decrease being proportional to the constraint strength. Along the radial direction of the outlet section, the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then, with increasing constraint strength, gradually extends to the whole section from the inner wall. Based on the experimental data, an empirical model describing the constraint strength was established. The average relative error of the model is within 7.69%.  相似文献   

18.
王宴滨  高德利  房军 《实验力学》2014,29(5):620-626
为对隔水管在复杂应力状态下的力学特性进行试验研究,研制了能够模拟高液压环境下管柱力学行为的特殊试验装置——深水管柱力学模拟试验系统,并借助该系统对全尺寸隔水管在受内外压条件下进行了力学特性模拟试验。结果表明:试验系统运行良好,能够有效地按照要求进行加载、卸载。试验中通过对隔水管试件进行内外压加载,同时对系统两端的轴向活塞加压,消除了由于内外压产生的轴向力,实现了在内外压条件下的隔水管力学特性模拟试验。通过在管柱外壁粘贴电阻应变片,得到了其真实径向应变与环向应变随内外压变化的关系曲线,并通过分析计算得到了试件的真实应力状态。由于隔水管加工制造等方面的误差,真实的应变数据、应力状态与理论推导结果并不重合。为了提高深水作业的安全性与经济性,可以借用试验结果对理论推导值进行修正,也说明了用试验方法进行隔水管力学特性研究的重要性。该试验系统为深水作业管柱等的模拟试验提供了一个良好的平台,能够有效降低深水钻采作业的风险,提高深水钻采作业的经济性与安全性,具有较高的推广应用价值。  相似文献   

19.
A new technique for determining the transient heat transfer coefficients from transient, measured temperatures inside solids is presented. The procedure is capable of handling complex geometries and the temperature dependence of the material properties. The method is straightforward and offers a great deal of flexibility in the model and the number of the unknown heat transfer coefficients. Numerical examples are presented as verification of the method.  相似文献   

20.
Nanoparticle dispersion and coagulation behaviors in a turbulent round jet were studied in this article. An experimental system was designed to generate a uniformly distributed air–nanoparticle two-phase flow in a turbulent round jet. The particle size distribution (PSD) was measured by a scanning mobility particle sizer (SMPS) in the near field of the jet. The particle diameters were nearly constant in the potential core due to the high carrying velocity and laminar characteristic of the flow but grew larger in the region of high turbulence intensities because the vortex structures in the mixing layer promoted coagulation. Furthermore, the migration property of small-sized nanoparticles forced them to be preserved in the potential core also leading to the diameter increase. The comparison of the particle concentration distributions at different sections indicated that the shear layer is the major region for the mixing of particle-laden stream and ambient air. The particle diameters in the axial direction experienced three stages including a slightly changed stage, an increasing stage and a constant stage. The diameter increase should be attributed to turbulence coagulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号