首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multicomponent vaporization model is integrated with detailed fuel chemistry and soot models for simulating biodiesel–diesel spray combustion. Biodiesel, a fuel mixture comprised of fatty-acid methyl esters, is an attractive alternative to diesel fuel for use in compression-ignition engines. Accurately modelling of the spray, vaporization, and combustion of the fuel mixture is critical to predicting engine performance using biodiesel. In this study, a discrete-component vaporization model was developed to simulate the vaporization of biodiesel drops. The model can predict differences in the vaporization rates of different fuel components. The model was validated by use of experimental data of the measured biodiesel drop size history and spray penetration data obtained from a constant-volume chamber. Gas phase chemical reactions were simulated using a detailed reaction mechanism that also includes PAH reactions leading to the production of soot precursors. A phenomenological multi-step soot model was utilized to predict soot emissions from biodiesel–diesel combustion. The soot model considered various steps of soot formation and destruction, such as soot inception, surface growth, coagulation, and PAH condensation, as well as oxidation by oxygen and hydroxyl-containing molecules. The overall numerical model was validated with experimental data on flame structure and soot distributions obtained from a constant-volume chamber. The model was also applied to predict combustion, soot and NOx emissions from a diesel engine using different biodiesel–diesel blends. The engine simulation results were further analysed to determine the soot emissions characteristics by use of biodiesel–diesel fuels.  相似文献   

2.
An experimental and kinetic modeling study is carried out to characterize combustion of low molecular weight esters in nonpremixed, nonuniform flows. An improved understanding of the combustion characteristics of low molecular weight esters will provide insights on combustion of high molecular weight esters and biodiesel. The fuels tested are methyl butanoate, methyl crotonate, ethyl propionate, biodiesel, and diesel. Two types of configuration – the condensed fuel configuration and the prevaporized fuel configuration – are employed. The condensed fuel configuration is particularly useful for studies on those liquid fuels that have high boiling points, for example biodiesel and diesel, where prevaporization, without thermal breakdown of the fuel, is difficult to achieve. In the condensed fuel configuration, an oxidizer, made up of a mixture of oxygen and nitrogen, flows over the vaporizing surface of a pool of liquid fuel. A stagnation-point boundary layer flow is established over the surface of the liquid pool. The flame is stabilized in the boundary layer. In the prevaporized fuel configuration, the flame is established in the mixing layer formed between two streams. One stream is a mixture of oxygen and nitrogen and the other is a mixture of prevaporized fuel and nitrogen. Critical conditions of extinction and ignition are measured. The results show that the critical conditions of extinction of diesel and biodiesel are nearly the same. Experimental data show that in general flames burning the esters are more difficult to extinguish in comparison to those for biodiesel. At the same value of a characteristic flow time, the ignition temperature for biodiesel is lower than that for diesel. The ignition temperatures for biodiesel are lower than those for the methyl esters tested here. Critical conditions of extinction and ignition for methyl butanoate were calculated using a detailed chemical kinetic mechanism. The results agreed well with the experimental data. The asymptotic structure of a methyl butanoate flame is found to be similar to that for many hydrocarbon flames. This will facilitate analytical modeling, of structures of ester flames, using rate-ratio asymptotic techniques, developed previously for hydrocarbon flames.  相似文献   

3.
乙醇柴油混合燃料碳烟特性可视化研究   总被引:2,自引:0,他引:2  
在一台电控共轨光学发动机上,采用高速摄影法,对不同掺混比例的乙醇柴油混合燃料进行研究,获取了缸内燃烧火焰图像,通过双色法得到表征碳烟总体分布的KL因子,分析了乙醇这种含氧生物质燃料对缸内燃烧过程和碳烟生成特性的影响。研究结果表明,随着乙醇掺入比例的增加,滞燃期相对延长,燃烧持续期缩短,火焰的亮度和分布面积都随之下降。KL因子的最高浓度降低,碳烟浓区的分布区域减小,碳烟的氧化进程加快。  相似文献   

4.
The physical and chemical phenomena that take place during fuel injection, entrainment and fuel-air mixing, cool-flame and ignition reaction, and combustion in diesel sprays still require extensive study. Global parameters such as liquid and vapor jet penetration lengths and spreading rates render useful yet still limited information. Understanding of the temporal evolution of the spray as it progresses through various steps is needed to develop advanced clean combustion modes and high-fidelity predictive models with sufficient accuracy. In this study, high-speed rainbow schlieren deflectometry (RSD) and OH* chemiluminescence are used to simultaneously image fuel-air mixing, cool-flame reactions, ignition, flame propagation and stabilization, and combustion in a transient diesel-like flame. A constant pressure flow rig (CPFR) is used to conduct multiple injections in quick succession to obtain a statistically relevant dataset. n-heptane was injected at nominal supply pressure of 1000 bar from a single-hole diesel injector into ambient at pressure of 30 bar and temperature of 800 K. About 500 injections were performed and analyzed to reveal structural features of non-reacting and reacting regions of the spray, quantify jet penetration and spreading rates, and study cool-flame behavior, ignition, flame propagation and stabilization at lift-off length, and combustion at upstream and downstream locations.  相似文献   

5.
在一台光学发动机上,利用火焰高速成像技术和自发光光谱分析法,研究了燃料敏感性(S)为0和6时对发动机缸内火焰发展和燃烧发光光谱的影响。试验过程中,通过改变喷油时刻(SOI=-25,-15和-5°CA ATDC)使燃烧模式从部分预混燃烧过渡到传统柴油燃烧模式。通过使用正庚烷、异辛烷、乙醇混合燃料来改变燃料敏感性。结果表明,在PPC模式下(-25°CA ATDC),火焰发展过程是从近壁面区域开始着火,而后向燃烧室中心发展,即存在类似火焰传播过程,同时在燃烧室下部未燃区域也形成新的着火自燃点。敏感性对燃烧相位影响较大,对缸内燃烧火焰发展历程影响较小;高敏感性燃料OH和CH带状光谱出现的时刻推迟,表明高敏感性燃料高温反应过程推迟,且光谱强度更低,表明碳烟辐射强度减弱。在PPC到CDC之间的过渡区域(-15°CA ATDC),燃烧火焰发光更亮,燃烧反应速率比-25°CA ATDC时刻的反应速率更快。高、低敏感性燃料对缸压放热率的影响规律与-25°CA ATDC相近,此时的燃烧反应更剧烈,放热率更高,碳烟出现时刻更早。该喷油时刻下的光谱强度高于PPC模式下的光谱强度,说明此时的CO氧化反应与碳烟辐...  相似文献   

6.
Late-evaporating liquid fuel wall-films are considered a major source of soot in spark-ignition direct-injection (SIDI) engines. In this study, a direct-injection model experiment was developed to visualize soot formation in the vicinity of evaporating fuel films. Isooctane is injected by a multi-hole injector into the optically accessible part of a constant-flow facility at atmospheric pressure. Some of the liquid fuel impinges on the quartz-glass windows and forms fuel films. After spark ignition, a turbulent flame front propagates through the chamber, and subsequently sooting combustion is detected near the fuel films. Overlapping laser light sheets at 532 and 1064 nm excite laser-induced fluorescence (LIF) of polycyclic aromatic hydrocarbons (PAH) -potential soot precursors- and laser-induced incandescence (LII) of soot, respectively. The 532 nm light sheet has low fluence to avoid the excitation of LII. The LII and LIF signals are detected simultaneously and spectrally separated on two cameras. In complementary line-of-sight imaging, the fuel spray, chemiluminescence, and soot incandescence are captured with a high-speed color camera. In separate experiments, toluene is added to the isooctane as a fluorescent tracer and excited by pulsed 266 nm flood illumination. From images of the LIF signal, the fuel-films’ thickness and mass evolutions are evaluated. The films survive the entire combustion event. PAH LIF is found in close vicinity of the evaporating fuel films. Soot is found spatially separated from, but adjacent to the PAH, both with high spatial intermittency. Average images additionally indicate that soot is formed with a much higher spatial intermittency than PAH. Images from the color camera show soot incandescence earlier and in a similar region compared to soot LII. Chemiluminescence downstream of the soot-forming region is thought to indicate the subsequent oxidation of fuel, soot, and PAH.  相似文献   

7.
Fuel-flexible aircraft propulsion systems using compression ignition engines will require novel strategies for reducing the ignition delay of low-reactivity fuels to feasible timescales. Hot surface ignition of fuel sprays has been implemented in some practical situations, but the complex nature of flame formation within the spray structure poses significant challenges. In order to design next-generation ignition devices, the capacity of hot surface heating elements to promote fuel spray ignition must be investigated. In this study, a rapid compression machine (RCM) was used to examine the ignition process of a single kerosene-based F-24 jet fuel spray with a cylindrical heating element inserted into the spray periphery. The experiments, performed with moderately high injection pressures of 40 MPa, have demonstrated two modes of ignition governed by surface temperature and insertion depth of the heating element. There exists an optimal position where the heating element tip is located in the fuel vapor cone around the liquid spray. For this configuration, a critical surface temperature was identified (~1250 K), above which short ignition delays associated with a “spray ignition” mode are consistently achieved. In this case, a local ignition flame kernel propagates downstream to the flame lift-off length before full ignition of the spray. In comparison, below the critical temperature a slower “volumetric” mode results. The extended ignition delays associated with this mode may be impractical for compression ignition engines operating at high speeds and increased altitude.  相似文献   

8.
Biofuels, including biodiesel have the potential to partially replace the conventional diesel fuels for low-temperature combustion engine applications to reduce the CO2 emission. Due to the long chain lengths and high molecular weights of the biodiesel components, it is quite challenging to study the biodiesel combustion experimentally and computationally. Methyl crotonate, a short unsaturated fatty acid methyl ester (FAME) is chosen for this chemical kinetic study as it is considered as a model biodiesel fuel. Auto-ignition experiments were performed in a rapid compression machine (RCM) at pressures of 20 and 40 bar under diluted conditions over a temperature range between 900 and 1074 K, and at different equivalence ratios (? = 0.25, 0.5 and 1.0). A chemical kinetic mechanism is chosen from literature (Gaïl et al. 2008) and is modified to incorporate the low-temperature pathways. The mechanism is validated against existing shock tube data (Bennadji et al. 2009) and the present RCM data. The updated mechanism shows satisfactory agreement with the experimental data with significant improvements in low-temperature ignition behavior. The key reactions at various combustion conditions and the improved reactivity of the modified mechanism are analyzed by performing sensitivity and path flux analysis. This study depicts the importance of low-temperature pathways in predicting the ignition behavior of methyl crotonate at intermediate and low temperatures.  相似文献   

9.
A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO2) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H2/CO/C1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling.  相似文献   

10.
柴油引燃天然气的双燃料燃烧机理的研究   总被引:20,自引:0,他引:20  
本文介绍在一台光学发动机上,利用高速数字摄像和数据采集技术,对柴油引燃天然气双燃料发动机的着火、火焰传播、气缸内压力、压力升高率等变化规律进行的研究。结果表明,采用双燃料的燃烧方式具有明显的多点着火型的预混燃烧特点,与采用纯柴油的燃烧方式相比,燃烧持续期短、产生的碳烟少,但爆发压力高、压力升高率大。  相似文献   

11.
n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction.  相似文献   

12.
The demand for petroleum-derived gasoline in the transportation sector is on the rise. For better knowledge of gasoline combustion in practical combustion systems, this study presents experimental measurements and numerical prediction of autoignition temperatures and extinction limits of six FACE (fuels for advanced combustion engines) gasoline fuels in counterflow flames. Extinction limits were measured at atmospheric pressures while the experiments for autoignition temperatures were carried out at atmospheric and high pressures. For atmospheric pressure experiment, the fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while a condensed fuel configuration is used for ignition experiment at higher chamber pressures. The oxidizer stream is pure air. Autoignition temperatures of the tested fuels are nearly the same at atmospheric pressure, while a huge difference is observed as the pressure is increased. Unlike the ignition temperatures at atmospheric pressures, minor difference exists in the extinction limits of the tested fuels. Simulations were carried out using a recently developed gasoline surrogate model. Both multi-component and n-heptane/isooctane mixtures were used as surrogates for the simulations. Overall, the n-heptane/isooctane surrogate mixtures are consistently more reactive as compared the multi-component surrogate mixtures. Transport weighted enthalpy and radical index analysis was used to explain the differences in extinction strain rates for the various fuels.  相似文献   

13.
In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.  相似文献   

14.
A New One Shot Engine (NOSE) was designed to simulate the thermodynamic conditions at High Pressure-High Temperature like an actual common-rail diesel engine in order to study the compression ignition of spray. The volume of the combustion chamber provided with large optical windows simplified the implementation of various optical diagnostics. The advantage of this kind of set-up in comparison to pre-burn or flue chambers is that the initial gas mixture can be well controlled in terms of species and mole fraction. The purpose of this work was to investigate the impact of nitric oxide (NO) on ignition delay (ID) for two fuels with different cetane numbers: n-heptane, and n-dodecane. In the thermodynamic conditions chosen (60?bar and over 800–900?K), NO had a strong effect on ID, with increases in NO tending to reduce the ignition delay. Results showed that ID and Lift-Off Length (LOL) presented the same trend as a function of temperature and NO concentration. Experimentally, at 900?K the ignition of n-dodecane was promoted by NO up to 100?ppm, whilst higher NO levels did not further promote ignition and a stabilization of the value has been noticed. For n-heptane, stronger promoting effects were observed in the same temperature conditions: the ignition delays were monotonically reduced with up to 200?ppm NO addition. At a lower temperature (800?K) the inhibiting effect was observed for n-dodecane for [NO] greater than 40?ppm, whereas only a promoting effect was observed for n-heptane. The experimental results of LOL showed that NO shortened LOL in almost all cases, and this varied with both the NO concentration and the mixture temperature. Thus, fuels with shorter ignition delays produce shorter lift-off lengths.  相似文献   

15.
Direct injection spark ignition (DISI) engines have been widely used in passenger cars due to their lower fuel consumption, better controllability, and high efficiency. However, DISI engines are suffering from wall wetting, imperfect mixture formation, excess soot emissions, and cyclic variations. Applying a new fuel atomization technique and using biofuels with their distinctive properties can potentially aid in improving DISI engines. In this research, the effects of isobutanol and 2-butanol and their blends with Toluene Primary Reference Fuel (TPRF) on spray characteristics, DISI engine combustion, and particle number (PN) emissions are investigated for conditions with and without flash boiling of the injected fuel. Spray characteristics are investigated using a constant volume chamber. Then, the combustion, flame propagation, and PN emissions are examined using an optical DISI engine. The fuel temperature is set to 298 K and 453 K for liquid injection and flash boiling injection, respectively. The tested blending ratio is 30 vol% butanol isomers and 70 vol% TPRF. The results of the spray test reveal that liquid fuel plumes are distinctly observed, and butanol blends show a slightly wider spray angle with lower penetration length compared to TPRF. However, under flash boiling injection, the sprays collapse towards the injector axis, forming a more extended single central vapor jet due to the plumes' interaction. Meanwhile, butanol blends yield a narrow spray angle with more extended penetration compared to TPRF. The flame visualization test shows that the flash boiling injection reduced yellow flames compared to liquid fuel injection, reflecting the improvements in mixture formation. Thus, improvements were noted in the heat release and PN emissions. Butanol addition reduced the PN emissions by 43% under regular liquid injection. Flash boiling injection provided an additional 25% reduction in PN emissions.  相似文献   

16.
Low-Temperature Combustion (LTC) is becoming a promising technology for simultaneously reducing soot and NOx emissions from diesel engines. LTC regimes are evaluated by the flame lift-off length – the distance from the injector orifice to the location of hydroxyl luminescence closest to the injector in the flame jet. Various works have been dedicated to successful simulations of lifted flames of a diesel jet by use of various combustion modeling approaches. In this work, flame surface density and flamelet concepts were used to model the diesel lift-off length under LTC conditions. Numerical studies have been performed with the ECFM3Z model, n-Heptane and diesel fuels to determine the flame lift-off length and its correlation with soot formation under quiescent conditions. The numerical results showed good agreement with experimental data, which were obtained from an optically accessible constant volume chamber and presented at the Engine Combustion Network (ECN) of Sandia National Laboratories. It was shown that at a certain distance downstream from the injector orifice, stoichiometric scalar dissipation rate matched the extinction scalar dissipation rate. This computed extinction scalar dissipation rate correlated well with the flame lift-off length. For the range of conditions investigated, adequate quantitative agreement was obtained with the experimental measurements of lift-off length under various ambient gas O2 concentrations, ambient gas temperatures, ambient gas densities and fuel injection pressures. The results showed that the computed lift-off length values for most of the conditions lay in a reasonable range within the quasi-steady lift-off length values obtained from experiments. However, at ambient temperatures lower than 1000 K, the lift-off length values were under-predicted by the numerical analysis. This may be due to the use of the droplet evaporation model as it is believed that evaporation has a strong effect on the lift-off length.  相似文献   

17.
Diesel flame lift-off and stabilization in the presence of laser-ignition were numerically investigated with the method of Eulerian stochastic fields. The aim was to scrutinise the interaction between the lifted diesel flame and an ignition kernel upstream of the lifted flame. The numerical simulation was carried out in a constant-volume combustion vessel with n-heptane as fuel. The process was studied previously in an experiment employing Diesel #2 as the fuel in the same combustion vessel. In the experiment a lifted flame was first established at a position downstream of the nozzle. An ignition kernel was then initiated using a high-energy pulse laser at a position upstream of the natural lift-off position of the diesel flame. The laser-ignition kernel was modelled using a high-temperature (~2000 K) hot spot. In both experiment and simulations the upstream front of the ignition kernel was shown to remain around the initial laser ignition site for a substantially long period of time, while the downstream front of the ignition kernel propagates rapidly towards the natural lift-off position downstream of the laser ignition site. The lift-off position oscillated before the final stabilization at the natural lift-off position. The structures and the propagation speed of the reaction fronts in the laser-ignition kernel and the main flame were analysed. Two different stabilization mechanisms, the auto-ignition mechanism and the flame propagation mechanism, were identified for the naturally lifted flame and the laser-induced reaction front, respectively. A mechanism was proposed to explain the oscillation of the lift-off position.  相似文献   

18.
This study investigates the low- and high-temperature ignition and combustion processes in a high-pressure spray flame of n-dodecane using simultaneous 50-kHz formaldehyde (HCHO) planar laser-induced fluorescence (PLIF) and 100-kHz schlieren imaging. The PLIF measurements were facilitated through the use of a pulse-burst-mode Nd:YAG laser, producing a 355-nm pulse-train with 300 pulses at 70 mJ/pulse, separated by 20-µs, in a 6-ms burst. The high-speed HCHO PLIF signal was imaged using a non-intensified CMOS camera with dynamic background emission correction. The acquisition rate of this HCHO PLIF diagnostic is unique to the research community, and when combined with high-speed schlieren imaging, provides unprecedented opportunity for analysis of the spatiotemporal evolution of fuel jet penetration and low- and high-temperature ignition processes relevant to internal combustion engine conditions. The present experiments are conducted in the Sandia constant-volume preburn vessel equipped with a new Spray A injector. The influences of ambient conditions are examined on the ignition delay times of the two-stage ignition events, HCHO structures, and lift-off length values. Consistent with past studies of traditional Spray A flames, the formation of HCHO is first observed in the jet peripheries where the equivalence ratio (Φ) is expected to be leaner and hotter and then grows in size and in intensity downstream into the jet core where Φ is expected to be richer and colder. The measurements demonstrate that the formation and propagation of HCHO from the leaner to richer region leads to high-temperature ignition events, supporting the identification of a phenomenon coined “cool-flame wave propagation” during the transient ignition process. Subsequent high-temperature ignition is found to consume the previously formed HCHO in the jet head, while the formation of HCHO persists in the fuel-rich zone near the flame base over the entire combustion period.  相似文献   

19.
本文通过在柴油中添加小比例二甲氧基甲烷(DMM)以及纳米氧化铝(Al2O3)颗粒研究一台小型农用柴油机的燃烧与排放特性.研究表明,随着柴油中DMM添加比例的增大,发动机燃烧特性参数如缸内压力、燃烧放热率及制动热效率得到明显地提升,着火延迟期以及CA50逐渐减小;排放方面HC和NOx增加,而CO和碳烟得到有效地抑制.燃油...  相似文献   

20.
In a context of growing level of environmental awareness, emission from aviation are the subject of increasing scrutiny. This situation poses important challenges because, due to safety, practical and economic factors, aero-transportation technologies are not likely to undergo rapid paradigm shifts. An area where important innovations are being introduced is fuel technology: fuels from alternative processes, potentially from renewable sources, offer the opportunity of limiting the carbon footprint of transportation, moreover, a better control on fuel quality can contribute to reducing emissions.Hydro-treating of oil based fuels can reduce their sulfur and aromatic content promoting a cleaner combustion. In order to better understand the impact of hydro-treating on emissions of PAHs and soot from jet fuels, new speciation data covering oxidation intermediates and soot precursors were measured in a flow reactor for a standard jet fuel and its hydro-treated counterpart. Using a detailed kinetic mechanism and complex surrogate blends mimicking the composition of the real fuels, the speciation data from the flow reactor were simulated. Additionally, soot formation trends were calculated and compared with previously published data. Using the kinetic model, which is based on mechanistic principles, it was possible to separate the relative contribution of different processes and, for the fuel blends of interest, the role played by specific components in the PAHs and soot formation. The results obtained provide useful information towards more effective fuel formulation strategies and fuel blends modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号