首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental validation of the tip asymptotics for a fluid-driven crack   总被引:1,自引:0,他引:1  
This paper provides experimental confirmation of the opening asymptotes that have been predicted to develop at the tip of fluid-driven cracks propagating in impermeable brittle elastic media. During propagation of such cracks, energy is dissipated not only by breaking of material bonds ahead of the tip but also by flow of viscous fluid. Theoretical analysis based on linear elastic fracture mechanics and lubrication theory predicts a complex multiscale asymptotic behavior of the opening in the tip region, which simplifies either as or as power law of the distance from the tip depending on whether the dominant mechanism of energy dissipation is bond breaking or viscous flow. The laboratory experiments entail the propagation of penny-shaped cracks by injection of glycerin or glucose based solutions in polymethyl methacrylate (PMMA) and glass specimens subjected to confining stresses. The full-field opening is measured from analysis of the loss of intensity as light passes through the dye-laden fluid that fills the crack. The experimental near-tip opening gives excellent agreement with theory and therefore confirms the predicted multi-scale tip asymptotics.  相似文献   

2.
3.
4.
The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3° and 90° with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and , and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths . On the other hand, for the films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and thick films sink-in occurs around the indenter, while pile-up occurs in the film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].  相似文献   

5.
We utilize the recently developed surface Cauchy-Born model, which extends the standard Cauchy-Born theory to account for surface stresses due to undercoordinated surface atoms, to study the coupled influence of boundary conditions and surface stresses on the resonant properties of gold nanowires with surfaces. There are two major purposes to the present work. First, we quantify, for the first time, variations in the nanowire resonant frequencies due to surface stresses as compared to the corresponding bulk material which does not observe surface effects within a finite deformation framework depending on whether fixed/free or fixed/fixed boundary conditions are utilized. We find that while the resonant frequencies of fixed/fixed nanowires are elevated as compared to the corresponding bulk material, the resonant frequencies of fixed/free nanowires are reduced as a result of compressive strain caused by the surface stresses. Furthermore, we find that for a diverse range of nanowire geometries, the variation in resonant frequencies for both boundary conditions due to surface stresses is a geometric effect that is characterized by the nanowire aspect ratio. The present results are found to agree well with existing experimental data for both types of boundary conditions.The second major goal of this work is to quantify, for the first time, how both the residual (strain-independent) and surface elastic (strain-dependent) parts of the surface stress impact the resonant frequencies of metal nanowires within the framework of nonlinear, finite deformation kinematics. We find that if finite deformation kinematics are considered, the strain-independent surface stress substantially alters the resonant frequencies of the nanowires; however, we also find that the strain-dependent surface stress has a significant effect, one that can be comparable to or even larger than the effect of the strain-independent surface stress depending on the boundary condition, in shifting the resonant frequencies of the nanowires as compared to the bulk material.  相似文献   

6.
For powder type self-compacting concrete (SCC) mixes, commonly used in Belgium, a shear thickening (Herschel–Bulkley) flow behaviour of the fresh mixes is quite often observed.A longstanding problem in rheometry is the so-called “Couette inverse problem”, where one tries to derive the flow curve from the torque measurements T(N) in a (wide-gap) concentric cylinder (Couette) rheometer, with T the torque registered at the inner, stationary cylinder and N the rotational velocity of the outer, rotating, cylinder.In this paper, the Couette inverse problem is approached by means of the integration method in order to convert T(N) into for a wide-gap (Ro/Ri = 1.45) concentric cylinder rheometer. The approach consists in the decoupling of the flow resistance and the power-law flow behaviour after exceeding the flow resistance. The integration approach is validated by experimental verification with different powder type SCC mixtures. By means of illustration, the results of one limestone powder type SCC mixture with different superplasticizer contents are shown in this paper.  相似文献   

7.
8.
Interface delamination during indentation of micron-scale ceramic coatings on metal substrates is modeled using discrete dislocation (DD) plasticity to elucidate the relationships between delamination, substrate plasticity, interface adhesion, elastic mismatch, and film thickness. In the DD method, plasticity in the metal substrate occurs directly via the motion of dislocations, which are governed by a set of physically based constitutive rules for nucleation, motion and annihilation. A cohesive law with peak stress characterizes the traction-separation response of the metal/ceramic interface. The indenter is a rigid flat punch and plane strain deformation is assumed. A continuum plasticity model of the same problem is studied for comparison. For low interface strengths (e.g. ), DD and continuum plasticity results are quantitatively similar, with delamination being nearly independent of interface strength, and easier for thinner, lower-modulus films. For higher interface strengths (), continuum plasticity predicts no delamination up to very high loads while the DD model shows a smooth increase in the critical indentation force for delamination with increasing interface strength. Tensile delamination in the DD model is driven by the accumulation of dislocations, and their associated high stresses, at the interface upon unloading. The DD model is thus capable of predicting the nucleation of cracks, and its dependence on material parameters, in realms of realistic constitutive behavior and/or small length scales where conventional continuum plasticity fails.  相似文献   

9.
Frictional sliding along an interface between two identical isotropic elastic plates under impact shear loading is investigated experimentally and numerically. The plates are held together by a compressive stress and one plate is subject to edge impact near the interface. The experiments exhibit both a crack-like and a pulse-like mode of sliding. Plane stress finite element calculations modeling the experimental configuration are carried out, with the interface characterized by a rate and state dependent frictional law. A variety of sliding modes are obtained in the calculations depending on the impact velocity, the initial compressive stress and the values of interface variables. For low values of the initial compressive stress and impact velocity, sliding occurs in a crack-like mode. For higher values of the initial compressive stress and/or impact velocity, sliding takes place in a pulse-like mode. One pulse-like mode involves well-separated pulses with the pulse amplitude increasing with propagation distance. Another pulse-like mode involves a pulse train of essentially constant amplitude. The propagation speed of the leading pulse (or of the tip of the crack-like sliding region) is near the longitudinal wave speed and never less than times the shear wave speed. Supersonic trailing pulses are seen both experimentally and computationally. The trends in the calculations are compared with those seen in the experiments.  相似文献   

10.
Wave propagation in viscoelastic rods is encountered in many applications including studies of impact and fracture under high strain rates and characterization of the dynamic behavior of viscoelastic materials. For viscoelastic materials, both material and geometric dispersion are possible when the diameter of the rod is of the same order as the wavelength. In this work, we simplify the Pochhammer frequency equation for low and intermediate loss viscoelastic materials and formulate corrections for geometric dispersion for both the phase velocity and attenuation. The formulation is then experimentally verified with measurements of the phase velocity and attenuation in commercial polymethylmethacrylate rods that are 12 and in diameter. Without correcting for geometric dispersion, the usable frequency range for determining the phase velocity and attenuation for the rod is about , and about for the rod. Using the correction procedure developed here, it was possible to accurately determine the phase velocity and attenuation up to frequencies exceeding for the rod and for the rod. These corrections are applicable to many polymers and other viscoelastic materials. From thereon, the viscoelastic properties of the material can be determined over a wide range of frequencies.  相似文献   

11.
We report here the first experimental measurements of non-linear rheological material properties of hagfish slime, a hydrated biopolymer/biofiber network, and develop a microstructural constitutive model to explain the observed non-linear viscoelastic behavior. The linear elastic modulus of the network is observed to be for timescales , making it one of the softest elastic biomaterials known. Non-linear rheology is examined via simple shear deformation, and we observe a secant elastic modulus which strain-softens at large input strain while the local tangent elastic modulus strain-stiffens simultaneously. This juxtaposition of simultaneous softening and stiffening suggests a general network structure composed of non-linear elastic strain-stiffening elements, here modeled as finite extensible non-linear elastic (FENE) springs, in which network connections are destroyed as elements are stretched. We simulate the network model in oscillatory shear and creep, including instrument effects from rotational inertia. The network model captures the simultaneous softening of the secant modulus and stiffening of tangent modulus as the model enters the non-linear viscoelastic regime.  相似文献   

12.
A set of cleavage experiments with strip-shaped single-crystal silicon specimens subjected to three-point bending is reported. The experiments enabled examination of the relationships between the dynamic energy release rate, the velocity, the orientation-dependent cleavage energy, and the cleavage plane of propagation.Dynamic crack propagation experiments show that when a [0 0 1] silicon single crystal is fractured under three-point bending at ‘parallel’ velocity (directly measured at the bottom surface of the specimen) of up to , it prefers to cleave along the vertical (1 1 0) plane, while when the specimen is fractured under the same conditions but at a velocity higher than , it cleaves along the inclined (1 1 1) plane. At intermediate velocities, the crack will deflect from the (1 1 0) plane to the (1 1 1) plane. Crack velocity was determined by the initial notch length. The local (calculated) velocity of deflection between the cleavage planes ranges from , for a crack propagating on the (1 1 0) plane in the direction, to about , for a crack on the (1 1 0) plane, but in the [0 0 1] direction.It is suggested that the cause of the deflection phenomenon is the anisotropic, velocity-dependent cleavage energy, resulted phonon radiation caused by anisotropic, velocity-dependent lattice vibrations. We have studied the effect of material properties and propose selection criteria to explain the deflection phenomenon: the crack will deflect to the plane of least-energy, for which GΓi(V)=max, or to the plane with maximum crack tip velocity, Vi(Γ)=max.  相似文献   

13.
We have developed a large deformation viscoplasticity theory with combined isotropic and kinematic hardening based on the dual decompositions F=FeFp [Kröner, E., 1960. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Archive for Rational Mechanics and Analysis 4, 273–334] and [Lion, A., 2000. Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. International Journal of Plasticity 16, 469–494]. The elastic distortion Fe contributes to a standard elastic free-energy ψ(e), while , the energetic part of Fp, contributes to a defect energy ψ(p) – these two additive contributions to the total free energy in turn lead to the standard Cauchy stress and a back-stress. Since Fe=FFp-1 and , the evolution of the Cauchy stress and the back-stress in a deformation-driven problem is governed by evolution equations for Fp and – the two flow rules of the theory.We have also developed a simple, stable, semi-implicit time-integration procedure for the constitutive theory for implementation in displacement-based finite element programs. The procedure that we develop is “simple” in the sense that it only involves the solution of one non-linear equation, rather than a system of non-linear equations. We show that our time-integration procedure is stable for relatively large time steps, is first-order accurate, and is objective.  相似文献   

14.
We present atomistic simulations of the tensile and compressive loading of single crystal face-centered cubic (FCC) nanowires with and orientations to study the propensity of the nanowires to deform via twinning or slip. By studying the deformation characteristics of three FCC materials with disparate stacking fault energies (gold, copper and nickel), we find that the deformation mechanisms in the nanowires are a function of the intrinsic material properties, applied stress state, axial crystallographic orientation and exposed transverse surfaces. The key finding of this work is the first order effect that side surface orientation has on the operant mode of inelastic deformation in both and nanowires. Comparisons to expected deformation modes, as calculated using crystallographic Schmid factors for tension and compression, are provided to illustrate how transverse surface orientations can directly alter the deformation mechanisms in materials with nanometer scale dimensions.  相似文献   

15.
On the effective stress in unsaturated porous continua with double porosity   总被引:3,自引:0,他引:3  
Using mixture theory we formulate the balance laws for unsaturated porous media composed of a double-porosity solid matrix infiltrated by liquid and gas. In this context, the term ‘double porosity’ pertains to the microstructural characteristic that allows the pore spaces in a continuum to be classified into two pore subspaces. We use the first law of thermodynamics to identify energy-conjugate variables and derive an expression for the ‘effective’, or constitutive, stress that is energy-conjugate to the rate of deformation of the solid matrix. The effective stress has the form , where σ is the total Cauchy stress tensor, B is the Biot coefficient, and is the mean fluid pressure weighted according to the local degrees of saturation and pore fractions. We identify other emerging energy-conjugate pairs relevant for constitutive modeling of double-porosity unsaturated continua, including the local suction versus degree of saturation pair and the pore volume fraction versus weighted pore pressure difference pair. Finally, we use the second law of thermodynamics to determine conditions for maximum plastic dissipation in the regime of inelastic deformation for the unsaturated two-porosity mixture.  相似文献   

16.
17.
18.
Laser-generated stress wave profiles with rarefaction shocks (almost zero post-peak decay times) have been uncovered in different types of glasses and presented in this communication. The rise time of the pulses was found to increase with their amplitude, with values reaching as high as . This is in contrast to measurements in other brittle crystalline solids where pulses with rise times of and post-peak decay times of were recorded. The formation of rarefaction shock is attributed to the increased compressibility of glasses with increasing pressures. This was demonstrated using a one-dimensional nonlinear elastic wave propagation model in which the wave speed was taken as a function of particle velocity. The technological importance of these pulses in measuring the tensile strength of very thin film interfaces is demonstrated by using a previously developed laser spallation experiment in which a laser-generated compressive stress pulse in the substrate reflects into a tensile wave from the free surface of the film and pries off its interface at a threshold amplitude. Because of the rarefaction shock, glass-modified waves allow generation of substantially higher interfacial tensile stress amplitudes compared with those with finite post-peak decay profiles. Thus, for the first time, tensile strengths of very strong and ultra thin film interfaces can be measured. Results presented here indicate that interfaces of 185-nm-thick films, and with strengths as high as , can be measured. Thus, an important advance has been made that should allow material optimization of ultra thin layer systems that may form the basis of future MEMS-based microelectronic, mechanical and clinical devices.  相似文献   

19.
We formulate and study inflation, extension and twisting of prestressed cylindrical shells that are isotropic in the stress free configuration. We establish that if the prestresses vary only radially in the annular cylinder then a deformation field of the form , θ=Θ+ΩZ, z=λZ is possible in annular cylinders made of any incompressible material and find sufficient conditions for the deformation to be possible when made of compressible materials. When the material is capable of undergoing large elastic deformations and has a non-linear constitutive relation, for the cases studied here, there is up to 26 percent variation in the boundary loads required to engender a given boundary displacement between the prestressed and stress free annular cylinders. On the other hand, the difference in the realized deformation field is only marginal (less than 2 percent). These are unlike the case wherein the material obeys Hooke's law and undergoes small deformations. This study has some relevance to the deformation of blood vessels.  相似文献   

20.
A new approach has been developed to treat the large-angle as well as the small-angle binary collisions in high temperature and high density plasmas when the test particle distribution function fα is even function about the test velocity and the relations of the mass and the velocity between the test particles and the field particles are satisfied with mαmβ (such as electron–ion collision or Lorentz-gas model) and . With the approach, the Boltzmann collision operator is derived to be suitable for the plasma considered as weakly coupled (Coulomb logarithm ) and moderately coupled , i.e., for the electron–ion coupling constant Γei<0.1. The modified collision operator has a direct and practical connection to the Rosenbluth potentials, the new reduced electron–ion collision operator differs from the original Fokker–Planck operator for Coulomb collisions by terms of order . Moreover, some calculations of relaxation rate and transport properties are given for new reduced electron–ion collision operator that shows corrections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号