首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了寻求新的自组装单分子膜体系,构建新的功能膜,研究了具备平面型的大环共轭硒杂环化合物-- 4,5-苯并苤硒脑(苯并[c]硒二唑,简称苤硒脑)在金表面的自组装单分子膜.通过X射线光电子能谱(XPS)和电化学手段对其进行表征.XPS研究结果表明,自组装形成单分子膜后,苤硒脑分子中Se3d结合能从57.4 eV下降到57.1 eV;表明硒杂环化合物是通过金硒键固定在金表面上的;电化学循环伏安法实验表明,金电极表面上自组装该有机硒后, Fe(CN)63-/4-的氧化还原峰几乎完全消失;以四硼酸钠为底液,测得该化合物自组装在金表面上时,其还原电位在-0.66 V,与在溶液中用裸金电极测得的还原峰电位基本一致.  相似文献   

2.
用电化学聚合法在多种烷基硫醇自组装膜修饰金电极上制备了聚吡咯.通过计时安培法、循环伏安法和交流阻抗技术研究了自组装膜的烷基链长和端基功能团对吡咯聚合过程和性质的影响.当自组装膜较完美时,聚吡咯沉积在自组装膜表面;而当自组装膜有一定缺陷时,吡咯在针孔处成核,然后继续生长并完全覆盖在自组装膜表面.研究结果表明,烷基硫醇的链越短,吡咯聚合越容易;疏水的烷基硫醇自组装膜有利于聚吡咯在电极表面的生长.  相似文献   

3.
疏水星形PCL与PCL-b-PEG两亲共聚物的自组装研究   总被引:1,自引:0,他引:1  
用疏水星形聚合物模拟疏水性药物,研究其与两亲聚合物的自组装,探讨两亲性聚合物包载疏水性药物的机理.用开环聚合合成了5种两亲聚己内酯-聚乙二醇两嵌段共聚物(PCL-b-PEG)和4种疏水星型聚己内酯(star-branched polycaprolactone,SPCL),使用相分离法使PCL-b-PEG与SPCL进行自组装.浊度、SEM、动态光散射(dynamic light scattering,DLS)和FTIR结果表明,PCL-b-PEG与SPCL能够进行自组装,而且PCL-b-PEG中PEG长度和PCL含量对自组装有影响;PCL-b-PEG/SPCL形成的自组装体的粒径与SPCL的臂长、臂数和加入量有关.  相似文献   

4.
用维生素B1(VB1)在金电极上进行自组装,制备了VB1自组装膜修饰金电极(VB1-Au/SAMs/CME).利用循环伏安法初步研究了此自组装单分子膜修饰电极的电化学行为.结果表明: VB1在金电极表面具有特性吸附.以\3-/ 4-氧化还原电对为探针,考察了VB1自组装膜修饰金电极的电化学性质, VB1自组装膜的存在对\3-/4-的电子转移具有明显的阻碍作用.研究了多巴胺(DA)和尿酸(UA)在此电极上的电化学行为.实验结果表明, DA和UA在此电极上均可被电催化氧化.差分脉冲伏安(DPV)氧化峰电流与DA浓度在2.0×10-5~4.0×10-4 mol/L范围内呈线性关系;测定UA的线性范围为6.0×10-5~2.2×10-4 mol/L,而且可实现这两种物质的同时测定.  相似文献   

5.
自组装单层或单分子膜(Self-assembled monolayers)的研究十分活跃,尤其是硫-金体系的单层研究更是得到科学家们的青睐。3-巯基丙酸由于可以在金基底形成稳定有序的二维自组装单分子膜,从而显示出独特的结构和表面性质。该文着重从膜的制备、膜内分子的结构、单层膜的性质以及应用等方面综述金基底上3-巯基丙酸自组装单分子膜的研究进展,并对其前景进行了展望。  相似文献   

6.
张悦  冯涛涛  纪文亮  张美宁 《电化学》2019,25(3):400-408
自组装单分子膜(SAM)由于其独特的物理化学性质近年来受到了极大的关注. SAM通过金硫键在电极表面形成高度有序的单分子膜,该稳定的分子膜不仅可以调节表面的亲疏水性质,而且可以促进电极表面氧化还原活性分子的反应速率. 本论文提出了一种简单有效的方法,在金微电极上构建半胱氨酸和胱胺共自组装单分子膜用于活体内抗坏血酸的检测. 研究发现,当混合单分子层中半胱氨酸和胱胺的摩尔比为1:1时,可以在低电位下(约为0.10 V)显著增强抗坏血酸氧化的电子转移动力学,同时该膜能在一定程度上抵抗蛋白质在电极表面的非特异性吸附. 将共自组装单分子膜应用到活体检测中,作者检测到鼠纹状体中抗坏血酸的基准值为257±30mmol·L-1(n = 3). 本论文为活体电化学检测提供了一种简单、有效的方法.  相似文献   

7.
郑国祥  邵勇  徐斌 《化学学报》2006,64(8):733-737
用苯胺作还原剂还原氯金酸合成了金纳米结构. TEM实验表明, 苯胺还原氯金酸能生成苯胺齐聚物或其聚合物包裹的金球形纳米粒子. XPS分析表明, 金纳米粒子包覆的聚合物层带正电荷. 该纳米粒子能用于电极表面纳米结构组装及氧化还原性的生物大分子的电化学研究, 实现了超氧化物歧化酶(SOD)在这种带正电荷的金纳米粒子表面的直接电子转移.  相似文献   

8.
介绍了近几年来我们研究组在层状组装膜的构筑以及功能化研究方面取得的一些最新进展.包括结合表面溶胶-凝胶技术与静电层状组装技术,实现了二阶非线性基团在层状组装多层膜中的非对称排列,制备了具有二阶非线性效应的膜材料;采用室温压印技术,发展了一种简便、经济和具有普适性的层状组装聚合物膜图案化方法;以轻度交联的聚合物微凝胶为构筑基元,制备了具有高负载量的聚合物层状组装膜;发展了一种基于离子剥离技术的层状组装自支持膜制备方法;基于层状组装技术,制备了具有超疏水和抗反射功能的涂层.  相似文献   

9.
应用选择性渗透的2-巯基乙磺酸(MES)自组装单层膜和纳米金阵列双层修饰玻碳电极,用溶出伏安法测定了在大分子污染物存在下的痕量Cu(Ⅱ)。纳米金阵列的修饰显著提高了玻碳电极的分析性能,而自发吸附的选择性渗透单层膜则有效阻止了电极表面被共存的大分子污染。方法校正曲线的斜率为0.13±0.016μA/10-9,LOD为0.137×10-9,且具有较大的线性范围。用此方法测定冶金废水中Cu2 含量,结果与AAS接近,方法具有实际应用价值。  相似文献   

10.
漆酚醛胺聚合物多孔膜的制备   总被引:2,自引:0,他引:2  
以漆酚醛胺聚合物(UFDP)为成膜材料,利用水辅助自组装的固体基板展开法和水面展开法制备了漆酚醛胺聚合物多孔膜.研究了在静态(即不在聚合物表面吹扫氮气)高湿度环境下聚合物溶液浓度、环境湿度和固体基板等因素对多孔膜形貌的影响.结果表明,水面展开法更有利于形成单层的多孔膜而固体基板展开法得到的是多层的多孔膜.当UFDP聚合物浓度为6.0 mg/mL,环境相对湿度为90%时,用水面展开法制得的单层多孔膜的孔径分布较均匀.  相似文献   

11.
Functionalized alkanethiols have been self-assembled on gold to modify the wetting properties of the surface and promote or hinder the adsorption of block copolymers containing both hydrophobic and hydrophilic blocks. X-ray photoelectron spectroscopy (XPS) studies of spin-coated polyethylene-block-poly(ethylene oxide) (PE-b-PEO) copolymers on 16-mercaptohexadecanoic acid (MHDA)-, octadecanethiol (ODT)-, and 1H,1H,2H,2H-perfluorodecanethiol (PFDT)-covered surfaces have been performed. In the case of an 80 wt % PEO block copolymer, spin-coating on a gold surface precovered with MHDA results in a polymer film thick enough to completely attenuate Au 4f photoelectrons; spin-coating on the more hydrophobic ODT and PFDT monolayers leads to significantly thinner polymer films and incomplete attenuation of the gold photoelectrons. The opposite results are observed when a 20 wt % PEO block copolymer is used. Angle-resolved XPS studies of the 80 wt % PEO block copolymer spin-coated onto an MHDA-covered surface indicate that the PE blocks of the polymer segregate to the near-surface region, oriented away from the hydrophilic carboxylic acid tails of the monolayers; the surface concentration of PE is further enhanced by annealing at 90 degrees C. Microcontact printing and dip-pen nanolithography have been used to pattern gold surfaces with MHDA, and the surfaces have been backfilled with ODT or PFDT, such that the unpatterned regions of the surface are covered with hydrophobic monolayers. In the case of backfilling with PFDT, spin-coating the 80 wt % PEO copolymer onto these patterned surfaces and subsequent annealing results in the block copolymer preferentially adsorbing on the MHDA-covered regions and forming well-defined patterns that mimic the MHDA pattern, as determined by scanning electron microscopy and atomic force microscopy. Significantly worse patterning, characterized by micron-sized polymer droplets, results when the surface is backfilled with ODT instead of PFDT. Using PFDT and MHDA, polymer features having widths as small as 500 nm have been formed. These studies demonstrate a novel method to pattern block copolymers with nanoscale resolution.  相似文献   

12.
Flexible honeycomb gold films supported by polymer sheets are fabricated by using polystyrene particle monolayers. The surfaces of the flexible gold films are covered with self-assembled monolayers (SAMs) of hydrophobic or hydrophilic thiol compounds, and the wettability of the modified surface is evaluated by measurements of the contact angles of water droplets. The contact angle of the film covered with hydrophobic SAM is ca. 150 degrees, which is greater than the value of 112 degrees for a flat gold surface, while the values for hydrophilic SAM are below 10 degrees.  相似文献   

13.
We have examined the adsorption of DNA-wrapped single-walled carbon nanotubes (DNA-SWNTs) on hydrophobic, hydrophilic, and charged surfaces of alkylthiol self-assembled monolayers (SAMs) on gold. Our goal is to understand how DNA-SWNTs interact with surfaces of varying chemical functionality. These samples were characterized using reflection absorption FTIR (RAIRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. We have found that DNA-SWNTs preferentially adsorb to positively charged amine-terminated SAMs and to bare gold surfaces versus hydrophobic methyl-terminated or negatively charged carboxylic acid-terminated SAMs. Examination of the adsorption on gold of single-strand DNA (ssDNA) of the same sequence used to wrap the SWNTs suggests that the DNA wrapping plays a role in the adsorption behavior of DNA-SWNTs.  相似文献   

14.
One of the sulfobetaine methacrylate (SBMA) monomers, N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine, was polymerized onto initiator-covered gold surfaces using atom transfer radical polymerization (ATRP) to form uniform polymer brushes. Self-assembled monolayers (SAMs) with ATRP initiators were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The thickness of grafted poly(SBMA) films was measured by ellipsometry. Fibrinogen adsorption on poly(SBMA) grafted surfaces was measured with a surface plasmon resonance (SPR) sensor. Two approaches were compared to graft ATRP initiators onto gold surfaces for surface polymerization and subsequent protein adsorption on these polymer grafted surfaces. The first was to prepare a SAM from omega-mercaptoundecyl bromoisobutyrate onto a gold surface. Superlow fouling surfaces with well-controlled poly(SBMA) brushes were achieved using this approach (e.g., fibrinogen adsorption <0.3 ng/cm2). The second approach was to react bromoisobutyryl bromide with a hydroxyl-terminated SAM on a gold surface. Although protein adsorption decreased as the density of surface initiators increased, the surface prepared using the second approach was not able to achieve as low protein adsorption as the first approach. Key parameters to achieve superlow fouling surfaces were studied and discussed.  相似文献   

15.
Well-controlled polymerization of N-vinylpyrrolidone (NVP) on Au surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP) was carried out at room temperature by a silanization method. Initial attempts to graft poly(N-vinylpyrrolidone) (PVP) layers from initiators attached to alkanethiol monolayers yielded PVP films with thicknesses less than 5 nm. The combined factors of the difficulty in the controllable polymerization of NVP and the instability of alkanethiol monolayers led to the difficulty in the controlled polymerization of NVP on Au surfaces. Therefore, the silanization method was employed to form an adhesion layer for initiator attachment. This method allowed well-defined ATRP polymerization to occur on Au surfaces. Water contact angle, X-ray photoelectron spectroscopy (XPS), and reflectance Fourier transform infrared (reflectance FTIR) spectroscopy were used to characterize the modified surfaces. The PVP-modified gold surface remained stable at 130 °C for 3 h, showing excellent thermal stability. Thus, postfunctionalization of polymer brushes at elevated temperatures is made possible. The silanization method was also applied to modify SPR chips and showed potential applications in biosensors and biochips.  相似文献   

16.
Self-organization of cationic polymer particles through hydrophobic interaction on polymer films in aqueous system and characteristic properties of the resulting particle monolayers were investigated. Cationic polymer particles bearing quaternary ammonium groups on their surfaces effectively self-organized on polymer films. With an increase of the particle surface charge density, the surface coverage and average aggregate size (N a) decreased. The surface coverage control was accomplished by tuning the ionic strength of the media. The wettability of polymer films for water was imparted by the formation of particle monolayers on them. Annealing of the particle monolayers resulted in the increase of the adhesive strength, while the wettability for water was lost. Further improvements of both wettability and adhesive strength of particle monolayers were achieved by the immobilization of silica colloids on the particle monolayers. This method would be effective for the hydrophilization of polymer films.  相似文献   

17.
A new method for assembling organic monolayers on gold is reported that employs hafnium ions as linkers between a phosphonate headgroup and the gold surface. Monolayers of octadecylphosphonic acid (ODPA) formed on gold substrates that had been pretreated with hafnium oxychloride are representative of this new class of organic thin films. The monolayers are dense enough to completely block assembly of alkanethiols and resist displacement by alkanethiols. The composition and structure of the monolayers were investigated by contact angle goniometry, XPS, PM-IRRAS, and TOF-SIMS. From these studies, it was determined that this assembly strategy leads to the formation of ODPA monolayers similar in quality to those typically formed on metal oxide substrates. The assembly method allows for the ready generation of patterned surfaces that can be easily prepared by first patterning hafnium on the gold surface followed by alkanephosphonate assembly. Using the bifunctional (thiol-phosphonate) 2-mercaptoethylphosphonic acid (2-MEPA), we show that this new assembly chemistry is compatible with gold-thiol chemistry and use TOF-SIMS to show that the molecule attaches through the phosphonate functionality in the patterned region and through the thiol in the bare gold regions. These results demonstrate the possibility of functionalizing metal substrates with monolayers typically formed on metal oxide surfaces and show that hafnium-gold chemistry is complementary and orthogonal to well-established gold-thiol assembly strategies.  相似文献   

18.
Protein resistance of oligoether self-assembled monolayers (SAMs) on gold and silver surfaces has been investigated systematically to elucidate structural factors that determine whether a SAM will be able to resist protein adsorption. Oligo(ethylene glycol) (OEG)-, oligo(propylene glycol)-, and oligo(trimethylene glycol)-terminated alkanethiols with different chain lengths and alkyl termination were synthesized as monolayer constituents. The packing density and chemical composition of the SAMs were examined by XPS spectroscopy; the terminal hydrophilicity was characterized by contact angle measurements. IRRAS spectroscopy gave information about the chain conformation of specific monolayers; the amount of adsorbed protein as compared to alkanethiol monolayers was determined by ellipsometry. We found several factors that in combination or by themselves suppress the protein resistance of oligoether monolayers. Monolayers with a hydrophobic interior, such as those containing oligo(propylene glycol), show no protein resistance. The lateral compression of oligo(ethylene glycol) monolayers on silver generates more highly ordered monolayers and may cause decreased protein resistance, but does not necessarily lead to an all-trans chain conformation of the OEG moieties. Water contact angles higher than 70 degrees on gold or 65 degrees on silver reduce full protein resistance. We conclude that both internal and terminal hydrophilicity favor the protein resistance of an oligoether monolayer. It is suggested that the penetration of water molecules in the interior of the SAM is a necessary prerequisite for protein resistance. We discuss and summarize the various factors which are critical for the functionality of "inert" organic films.  相似文献   

19.
The template function of cationic particle monolayers bearing quaternary ammonium groups on their surfaces towards anionic colloids was investigated in this paper. Monodispersed cationic polymer particles having quaternary ammonium groups were self-organized on octadecylated glass plates through hydrophobic interaction. The morphology of the resulting particle monolayers was changed by tuning hydrophilic–hydrophobic balance of particles to fabricate aggregated type and dispersed type of particle monolayers. Gold and silver colloids were selectively deposited onto the particle monolayers through electrostatic interaction. The deposited gold and silver colloids on particle monolayers showed plasmon absorbance. Fluorescent silica colloids were also selectively deposited on particle monolayers to permit fluorescence labeling of the particle monolayers. Cationic particle monolayers fabricated on hydrophobic solid octadecylated were found to effectively work as templates for the deposition of above mentioned inorganic colloids.  相似文献   

20.
A new method mapping the defects in self-assembled monolayers (SAMs) is described. The method is based on electrochemical polymerisation of nonconductive tyramine in defect sites of a monolayer and subsequent visualisation of the polymer structures by atomic force microscopy (AFM). SAMs of hexadecanthiol (HDT) on gold prepared by deposition from solution and microcontact printing were used as a model for this study. The method allows easy mapping of defects on monolayers and provides information about their shape, size, size distribution, defect density and spatial distribution. Comparative electrochemical characterisation of defects in SAMs before and after polymerisation shows that polymer growth occurs on the sites of uncovered gold. The approach should be applicable for the characterisation of defects in other types of ultra-thin organic films on conducting surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号