首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
A sensitive high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of quetiapine in rat plasma. Following liquid-liquid extraction, the analyte was separated using a gradient mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 384 to m/z 221 for quetiapine and m/z 327 to m/z 270 for the internal standard. The assay exhibited a linear dynamic range of 0.25-500 ng/mL for quetiapine in rat plasma. The lower limit of quantification was 0.25 ng/mL with a relative standard deviation of less than 7%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated method was successfully used to analyze rat plasma samples for application in pre-clinical pharmacokinetic studies. This method in rodent plasma could be adapted for quetiapine assay in human plasma.  相似文献   

2.
A sensitive high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of sitagliptin, a DPP-4 inhibitor, in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 408-235 for sitagliptin and m/z 310-148 for the internal standard. The assay exhibited a linear dynamic range of 0.1-250 ng/mL for sitagliptin in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 6%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

3.
A specific, sensitive, rapid and reproducible method for the determination of flomoxef in human plasma using high‐performance liquid chromatography–tandem mass spectrometry was developed and validated. Flomoxef was detected using an electrospay ionization method operated in negative‐ion mode. Chromatographic separation was performed in gradient elution mode on a Luna® C18(2) column (3 μm , 20 × 4.0 mm) at a flow rate of 1 mL/min and runtime 3.5 min. The mobile phase consisted of acetonitrile and water containing 0.1% formic acid as additive. Extraction of flomoxef from plasma and precipitation of plasma proteins was performed with acetonitrile with an absolute recovery of 86.4 ± 1.6%. The calibration curve was linear with a correlation coefficient of 0.999 over the concentration range 10–5000 ng/mL and the lower limit of quantification was 10 ng/mL. The intra‐ and inter‐day precisions were <11.8%, while the accuracy ranged from 99.6 to 109.0%. A stability study of flomoxef revealed that it could be successfully analyzed at 4ºС over 24 h, but it was unstable in solutions at room temperature during short‐term storage (4 h) and several freeze–thaw cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of clonidine in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 230 to 44 for clonidine and m/z 254 to 44 for the internal standard. The assay exhibited a linear dynamic range of 10-2000 pg/mL for clonidine in human plasma. The lower limit of quantification was 10 pg/mL with a relative standard deviation of less than 6.8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.5 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method was successfully used to analyze human plasma samples for application in pharmacokinetic studies. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of hydrochlorothiazide (I), a common diuretic and anti-hypertensive agent. The analyte and internal standard, tamsulosin (II) were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reversed-phase column (Waters symmetry C18) with a mobile phase of 10 mm ammonium acetate-methanol (15:85, v/v). The protonated analyte was quantitated in negative ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 296.1 solidus in circle 205.0 and m/z 407.2 solidus in circle 184.9 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.5-200 ng/mL for hydrochlorothiazide in human plasma. The lower limit of quantitation was 500 pg/mL, with a relative standard deviation of less than 9%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

6.
A liquid chromatographic mass spectrometric assay for the quantification of azithromycin in human plasma was developed. Azithromycin and imipramine (as internal standard, IS) were extracted from 0.5 mL human plasma using extraction with diethyl ether under alkaline conditions. Chromatographic separation of drug and IS was performed using a C18 column at room temperature. A mobile phase consisting of methanol, water, ammonium hydroxide and ammonium acetate was pumped at 0.2 mL/min. The mass spectrometer was operated in positive ion mode and selected ion recording acquisition mode. The ions utilized for quantification of azithromycin and IS were m/z 749.6 (M + H) + and m/z 591.4 (fragment) for azithromycin, and 281.1 m/z for internal standard; retention times were 6.9 and 3.4 min, respectively. The calibration curves were linear (r2 > 0.999) in the concentration ranges of 10–1000 ng/mL. The mean absolute recoveries for 50 and 500 ng/mL azithromycin and 1 µg/ mL IS were >75%. The percentage coefficient of variation and mean error were <11%. Based on validation data, the lower limit of quantification was 10 ng/mL. The present method was successfully applied to determine azithromycin pharmacokinetic parameters in two obese volunteers. The assay had applicability for use in pharmacokinetic studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, sensitive and rapid high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the assay of amlodipine in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase C(18) column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 409/238 for amlodipine and m/z 409/228 for the IS. The assay exhibited a linear dynamic range of 50-10,000 pg/mL for amlodipine in human plasma. The lower limit of quantification was 50 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of amlodipine and the IS from spiked plasma samples were 74.7 +/- 4.6 and 72.1 +/- 2.0%, respectively. A run time of 1.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies. The observed maximum plasma concentration (Cmax) of amlodipine (2.5 mg oral dose) was 1425 pg/mL, time to observed maximum plasma concentration (Tmax) was 8.1 h and elimination half-life (T(1/2)) was 50.1 h.  相似文献   

8.
Oxcarbazepine (OX), a new antiepileptic, may lead to unwanted side-effects or even life-threatening intoxications after overdose. Therefore, a validated liquid chromatographic/mass spectrometric (LC/MS) assay was developed for the quantification of OX and its pharmacologically active dihydro metabolite (dihydrooxcarbazepine, DOX, often named 10-hydroxycarbazepine). OX and DOX were extracted from plasma by the authors' standard liquid/liquid extraction and were separated on a Merck LiChroCART column with Superspher 60 RP Select B as the stationary phase. Gradient elution was performed using aqueous ammonium formate and acetonitrile. The compounds were quantified in the selected-ion monitoring mode using atmospheric pressure chemical ionization electrospray LC/MS. The assay was fully validated. It was found to be selective. The calibration curves were linear from 0.1 to 50 mg l(-1) for OX and DOX. Limits of quantification were 0.1 mg l(-1) for OX and DOX. The absolute recoveries were between 60 and 86%. The accuracy and precision data were within the required limits. The analytes in frozen plasma samples were stable for at least 1 month. The method was successfully applied to several authentic plasma samples from patients treated or intoxicated with OX. The measured therapeutic plasma levels ranged from 1 to 2 mg l(-1) for OX and from 10 to 40 mg l(-1) for DOX. The validated LC/MS assay proved to be appropriate for quantification of OX and DOX in plasma for clinical toxicology and therapeutic drug monitoring purposes. The assay is part of a general analysis procedure for the isolation, separation and quantification of various drugs and for their full-scan screening and identification.  相似文献   

9.
A high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantification of zidovudine in rat plasma. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 268/127 for zidovudine and m/z 230/112 for the internal standard. The method exhibited a linear dynamic range of 5-500 ng/mL for zidovudine in rat plasma. The lower limit of quantification was 5 ng/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 1.5 min for each sample made it possible to analyze more than 400 plasma samples per day. The validated method was applied for pharmacokinetic studies of the novel drug delivery systems of zidovudine in rats.  相似文献   

10.
A sensitive high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of rimonabant in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective (M+H)+ ions, m/z 463-363 for rimonabant and m/z 408-235 for the internal standard. The assay exhibited a linear dynamic range of 0.1-100 ng/mL for rimonabant in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 6%. With dilution integrity up to 10-fold, the upper limit of quantification was extendable up to 1000 ng/mL. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method was successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

11.
A high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantification of pramipexole in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 212/152 for pramipexole and m/z 409/228 for the IS. The method exhibited a linear dynamic range of 200-8000 pg/mL for pramipexole in human plasma. The lower limit of quantification was 200 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 3.5 min for each sample made it possible to analyze more than 200 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

12.
Sparfloxacin, a fluoroquinolone antibiotic, is used for the treatment of bacterial infection. A quantification method using mass spectrometry was developed for the determination of sparfloxacin in rat plasma. After simple protein precipitation with acetonitrile, the analytes were chromatographed on a reversed‐phase C18 column and detected by liquid chromatography/tandem mass spectrometry with electrospray ionization. The accuracy and precision of the assay were in accordance with FDA regulations for validation of bioanalytical methods. This method was applied to measure the plasma sparfloxacin concentrations after a single oral administration of sparfloxacin in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A simple and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for determining domperidone in human plasma. The analyte and internal standard (IS; mosapride) were isolated from plasma samples by protein precipitation with methanol (containing 0.1% formic acid). The chromatographic separation was performed on an Xterra MS C(18) Column (2.1 x 150 mm, 5.0 microm) with a gradient programme mobile phase consisting of 0.1% formic acid and acetonitrile at a flow rate of 0.30 mL/min. The total run time was 4.0 min. The analyses were carried out by multiple reaction monitoring using the parent-to-daughter combinations m/z 426 --> 175 and m/z 422 --> 198 (IS). The areas of peaks from the analyte and IS were used for quantification of domperidone. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicated that the lower limit of quantification was 0.2 ng/mL, and the assay exhibited a linear range of 0.2-60.0 ng/mL and gave a correlation coefficient (r(2)) of 0.999 or better. Quality control samples (0.4, 0.8, 15 and 50 ng/mL) in six replicates from three different analytical runs demonstrated an intra-assay precision (RSD) 4.43-6.26%, an inter-assay precision 5.25-7.45% and an overall accuracy (relative error) of <6.92%. The method can be applied to pharmacokinetic and bioequivalence studies of domperidone.  相似文献   

14.
A simple, rapid, sensitive and selective liquid chromatography/electrospray tandem mass spectrometry method was developed and validated for the simultaneous quantification of cilostazol and its primary metabolite 3,4-dehydrocilostazol in human plasma using mosapride as an internal standard. The method involves a simple one-step liquid-liquid extraction with a diethyl ether and dichloromethane mixture (7:3). The analytes were chromatographed using an isocratic mobile phase on a reversed-phase C18 column and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 370/288 for cilostazol, m/z 368/286 for 3,4-dehydrocilostazol and m/z 422/198 for the internal standard. The assay exhibited a linear dynamic range of 5–2,000 ng/mL for cilostazol and 5–400 ng/mL for 3,4-dehydrocilostazol in human plasma. The lower limit of quantitation was 5 ng/mL for both cilostazol and its metabolite. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetics, bioavailability or bioequivalence studies.   相似文献   

15.
A sensitive and specific method for the determination of memantine in human plasma is presented. Memantine was extracted from plasma and derivatized to the pentafluorobenzoyl derivative in a one-step procedure avoiding any sample concentration steps. Amantadine was used as an internal standard. The compounds were measured by gas chromatography/negative ion chemical ionization mass spectrometry without any further processing. Using this detection mode, the fragment ions at m/z 353 and 325 were obtained at high relative abundance. Calibration graphs were linear over the range 0.117-30 ng ml(-1). At the limit of quantification (LOQ), the inter-assay precision was 2.00% and the intra-assay variability was 3.22%. The accuracy at the LOQ showed deviations of -1.42% (intra-assay) and -2.47% (inter-assay). The method is rugged, rapid and robust and was applied to the batch determination of memantine during pharmacokinetic profiling of the drug.  相似文献   

16.
A highly sensitive and rapid ultra high performance liquid chromatography with tandem mass spectrometry method has been developed and validated for the determination of glucosamine in human plasma using miglitol as the internal standard. Special attention was paid to achieve the high throughput and sensitivity of the established method, and the absence of a matrix effect on the analytes. The sample preparation procedure involved a simple deproteinization step. The chromatographic separation was achieved on a Waters ACQUITY HSS Cyano column using a mixture of acetonitrile/2 mM ammonium acetate solution containing 0.03% formic acid (80:20, v/v) as the mobile phase with a very short run time of 1.5 min. This method was validated over the concentration range of 10–3000 ng/mL for glucosamine. The intra‐ and inter‐batch precision was <13.9% for the low, medium, and high quality control samples. The established method is highly sensitive with a lower limit of quantification of 10 ng/mL, low enough to determine the circadian rhythm on endogenous glucosamine level in human plasma, which has not been reported in detail until now. The method was successfully applied to characterize the pharmacokinetic profile of glucosamine in healthy volunteers following a single oral administration of 750 or 1500 mg glucosamine hydrochloride.  相似文献   

17.
Arginine (ARG) is a substrate for endogenous nitric oxide (NO) production whereas its metabolite, asymmetric dimethylarginine (ADMA), acts as an inhibitor. Sufficient NO production is essential for cardiovascular key functions, thus elevated concentration levels of ADMA are related to a range of cardiovascular diseases. Owing to the lack of reliable methods for the measurement of ARG and ADMA in human plasma, concentration values determined with these methods can differ considerably. We present here a simple and very robust liquid chromatographic/mass spectrometric method for the determination of ARG and ADMA utilizing isotope-labeled internal standards. Sample preparation requires only protein precipitation; the analytes were derivatized with o-phthalaldehyde-mercaptoethanol and separated on a reversed-phase C(18) column with gradient elution. The analytes were detected with an electrospray ionization ion trap instrument working in the full-scan single mass spectrometry mode. Concentration values obtained with this method for healthy controls were ARG = 63.9 +/- 23.9 microM and ADMA = 0.355 +/- 0.066 microM, with a normal range for ADMA from 0.225 to 0.485 microM. The corresponding values for end-stage chronic renal failure patients are ARG = 48.1 +/- 18.5 microM, p < 0.01 and ADMA = 0.673 +/- 0.134 M, p < 0.001.  相似文献   

18.
Oleuropein (OE) is the cardinal bioactive compound derived from Olea europaea and possesses numerous beneficial properties for human health. However, despite the plethora of analytical methods that have studied the biological fate of olive oil‐derived bioactive compounds, no validated methodology has been published to date for the simultaneous determination of OE, along with all its major metabolites. In this study, a liquid chromatography‐electrospray ionization‐tandem mass spectrometry (LC‐ESI MS/MS) method has been developed and validated for the quantification of OE, simultaneously with its main metabolites hydroxytyrosol, 2‐(3,4‐dihydroxyphenyl)acetic acid, 4‐(2‐hydroxyethyl)‐2‐methoxy‐phenol or homovanillyl alcohol, 2‐(4‐hydroxy‐3‐methoxyphenyl)acetic acid or homovanillic acid, and elenolic acid in rat plasma matrix. Samples were analyzed by LC‐ESI MS/MS prior to and after enzymatic treatment. A solid‐phase extraction step with high mean recovery for all compounds was performed as sample pretreatment. Calibration curves were linear for all bioactive compounds over the range studied, while the method exhibited good accuracy, intra‐ and inter‐day precision. The limit of detection was in the picogram range (per milliliterof plasma) for HT and OE and in the nanogram range (per milliliter of plasma) for the other analytes, and the method was simple and rapid. The developed methodology was successfully applied for the simultaneous quantification of OE and its aforementioned metabolites in rat plasma samples, thus demonstrating its suitability for pharmacokinetics, as well as bioavailability and metabolism studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of fexofenadine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 502/466 for fexofenadine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 1-500 ng/mL for fexofenadine in human plasma. The lower limit of quantification was 1 ng/mL with a relative standard deviation of less than 5% for fexofenadine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

20.
A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) was developed. This assay represents the first LC‐MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3‐atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/mL and 10 nm for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3–900 ng/mL and 10 nm to 10 µm for human plasma and cellular samples, respectively (r2 > 0.999). The intra‐ and inter‐day assay accuracy and precision were evaluated using quality control samples at three different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect and recovery were also successfully demonstrated. The present assay is superior to previously published LC‐MS and LC‐MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号