首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Meng X  Song Y  Hou H  Han H  Xiao B  Fan Y  Zhu Y 《Inorganic chemistry》2004,43(11):3528-3536
Four novel cadmium-btx (btx = 1,4-bis(triazol-1-ylmethyl)benzene) coordination polymers [Cd(btx)(2)(NO(3))(2)](n)(1), [Cd(btx)(2)Cl(2)](n)(2), [Cd(btx)(SO(4))(H(2)O)(2)](n)(3), and [Cd(btx)(S(2)O(7))(H(2)O)](n)(4) have been prepared by hydrothermal reaction (140 or 180 degrees C) and characterized. Both 1 and 2 have two-dimensional rhombohedral grid structures, 3 possesses a two-dimensional rectangular grid structure, and 4 displays a three-dimensional framework, which is formed by btx bridging parallel layers. To the author's best knowledge, polymer 4 is the first Cd(II) polymer in which the Cd(II) ion is eight-coordinated in a hexagonal bipyrimidal geometry. In addition, we studied the effects of temperature on the hydrothermal reaction system of btx and CdSO(4) and found that different products can be obtained at different temperatures. Furthermore, polymer 3 possesses a very strong third-order NLO absorptive effect with an alpha(2) value of 1.15 x 10(-)(9) m W(-1). Polymers 2-4 display strong fluorescent emissions in the solid state at room temperature. The DTA and TGA results of the four polymers are in agreement with the crystal structures.  相似文献   

2.
A series of structurally related binuclear metallacycles [Cd(NO(3))(2)L](2), where L is an angular exo-bidentate ligand, have been synthesized. Each metallacycle contains two coordinatively unsaturated, chiral metal centers within a single molecule, and the assembly of these metallacycles into polymeric framework structures has been studied systematically for the first time. Stereoselective homochiral association of [Cd(NO(3))(2)L](2) leads to the formation of helical coordination polymers, whereas meso type association results in nonhelical chain structures. The type of stereoselective aggregation depends on the conditions of self-assembly as well as on ligand functionality. Both helical and nonhelical polymeric complexes have been isolated for the metallacycle [Cd(NO(3))(2)(2,4'-pyacph)](2) (2,4'-pyacph = 2,4'-(4-ethynylphenyl)bipyridyl). Homochiral association results in the formation of helical [Cd(NO(3))]( infinity ) chains which link the binuclear [Cd(NO(3))(2)(2,4'-pyacph)](2) metallacycles into racemic two-dimensional sheets which contain both P and M [Cd(NO(3))]( infinity ) helices. In contrast, meso-association leads to the formation of nonhelical one-dimensional chains. It is shown that the product of homochiral association is predominately formed at room temperature and that of meso-association is generated at elevated temperatures. Thus, it may be concluded that the homochiral association appears to be energetically less favorable than the meso-association, a conclusion that has been confirmed by theoretical calculations of the crystal lattice energy. Several high-yield syntheses of bipyridyl-type ligands used for metallacyclic assembly are also reported.  相似文献   

3.
We report a systematic investigation of the temperature-dependent infrared vibrational spectra of a family of chemically related coordination polymer magnets based upon bridging bifluoride (HF(2)-) and terminal fluoride (F-) ligands in copper pyrazine complexes including Cu(HF(2))(pyz)(2)BF(4), Cu(HF(2))(pyz)(2)ClO(4), and CuF(2)(H(2)O)(2)(pyz). We compare our results with several one- and two-dimensional prototype materials including Cu(pyz)(NO(3))(2) and Cu(pyz)(2)(ClO(4))(2). Unusual low-temperature hydrogen bonding, local structural transitions associated with stronger low-temperature hydrogen bonding, and striking multiphonon effects that derive from coupling of an infrared-active fundamental with strong Raman-active modes of the pyrazine building-block molecule are observed. On the basis of the spectroscopic evidence, these interactions are ubiquitous to this family of coordination polymers and may work to stabilize long-range magnetic ordering at low temperature. Similar interactions are likely to be present in other molecule-based magnets.  相似文献   

4.
In this contribution several new coordination compounds on the basis of cadmium(II) thio- and selenocyanate with pyrimidine as co-ligand were prepared and investigated for their structural, thermal and spectroscopic properties. The reaction of cadmium(II) thiocyanate with pyrimidine leads to the formation of four compounds, which from a structural point of view are closely related. In the most pyrimidine-rich 1 : 2 compound [Cd(NCS)(2)(pyrimidine)(2)](n) (1A) (1 : 2 = ratio between metal salt and the co-ligand pyrimidine) the Cd cations are linked by the pyrimidine ligands into layers and are additionally coordinated by two terminal N-bonded anions. In the 2 : 3 compound {[Cd(NCS)(2)](2)(pyrimidine)(3)}(n) (1B) the Cd cations are linked into chains by μ-1,3 bridging thiocyanato anions, which are connected into layers by only half of the pyrimidine ligands, whereas the other co-ligands are only terminal coordinated. Further reduction of the pyrimidine content leads to the formation of the 1 : 1 2D compound [Cd(NCS)(2)(pyrimidine)](n) (1CI) in which the terminal N-bonded thiocyanato anions become bridging. Surprisingly, crystallization experiments lead to the formation of an additional pyrimidine-deficient intermediate of composition {[Cd(NCS)(2)](3)(pyrimidine)(2)}(n) (1D), in which some of the μ-1,3 coordinated anions transform into μ-1,1,3 bridging thiocyanato anions. Consequently the four structures can be used as snapshots of intermediates on the way to a more condensed thiocyanato coordination network. In contrast, with cadmium selenocyanate only two different compounds were obtained. The 1 : 2 compound [Cd(NCSe)(2)(pyrimidine)(2)](n) (2A) is not isotypic to 1A and shows a completely different coordination topology whereas the pyrimidine-deficient 1 : 1 compound (2B) shows a more condensed network with μ-1,3 coordinating selenocyanato anions. On heating, the 1 : 2 compound 1A decomposes into Cd(NCS)(2)via a new polymorphic modification (1CII) as intermediate which is metastable, whereas the 1 : 2 selenocyanato compound 2A transforms into the 1 : 1 compound 2B on heating which cannot be obtained phase pure under these conditions. If faster heating rates are used, there are indications for the formation of a 3 : 2 compound, which is amorphous to X-rays. The results are compared with those obtained for related thio- and selenocyanato coordination polymers with pyridine, pyridazine and pyrazine as co-ligand. Moreover, their impact on the structures and thermal reactivity of analogous paramagnetic compounds is discussed in detail. Based on the structural data of compound 1D the unknown structures of two intermediates were determined, which are formed in the thermal decomposition reaction of the Mn and Fe thiocyanato pyrimidine coordination polymers, reported recently.  相似文献   

5.
A series of metallo-macrocyclic based coordination polymers has been prepared from flexible amide ligands N-6-[(3-pyridylmethylamino)carbonyl]-pyridine-2-carboxylic acid (L1-CH(3)) and N-6-[(4-pyridylmethylamino)carbonyl]-pyridine-2-carboxylic acid (L2-CH(3)). In all but one case, self-assembled dinuclear metallo-macrocyclic units form the basis of the polymeric structures, whereby discrete metal centres, and dinuclear or trinuclear clusters, are linked by the self-assembled macrocycles to give 1D and 2D coordination polymers. In one instance, a 1D coordination polymer is formed in a reaction carried out under ambient conditions; when the same reaction is conducted under solvothermal conditions a 2D structure is formed. In all but two of these structures, the polymeric chains and nets are close-packed within the crystals. In the case of a 6,3-connected 2D coordination polymer {[Cd(3)(L2-CH(3))(3)(NO(3))(L2)(CH(3)OH)](NO(3))(2)·12?H(2)O}(n) (9), small oval channels percolate down the a-axis of the unit cell.  相似文献   

6.
Four semirigid ditopic ligands, N,N'-bis(3-pyridylmethyl)-pyromellitic diimide (L(1)), N,N'-bis(4-pyridylmethyl)-pyromellitic diimide (L(2)), N,N'-bis(3-pyridylmethyl)-naphthalene diimide (L(3)), and N,N'-bis(4-pyridylmethyl)-naphthalene diimide (L(4)), reacted with Cd(NO(3))(2) to result in four cadmium(II) complexes, namely, {[Cd(2)(L(1))(2)(NO(3))(4)(CH(3)OH)(4)]·H(2)O} (1), [Cd(L(2))(NO(3))(2)(CH(3)OH)(2)·Cd(2)(L(2))(3)(NO(3))(4)]·{4(HCCl(3))·2H(2)O}(n) (2), {[Cd(L(3))(2)(NO(3))(2)]}(n) (3), and {[Cd(L(4))(2)(NO(3))(2)]·2(CHCl(3))}(n) (4). These complexes have been characterized by elemental analyses, powder X-ray diffraction, thermogravimetric (TG) analyses, IR spectroscopy, and single-crystal X-ray diffraction. Structural analyses show that four types of structures are formed: (1) a discrete M(2)L(2) ring with two Cd ions and two cis-L(1) ligands comprising a zero-dimensional molecular rectangle (0D), (2) an unusual zigzag linear chain and a one-dimensional ladder existing simultaneously in the crystal lattice (1D), (3) a two-dimensional network of the (4,4) net structure (2D), and (4) an unusual chiral three-dimensional framework with 5-fold interpenetrating diamond (dia) topology (3D). In these complexes, the ligands exhibit different coordination modes and construct various architectures by bridging Cd(NO(3))(2) inorganic building blocks. These results suggest that structural diversity of the complexes is tunable by ligand modifications, that is, varying the ligand spacer bulkiness or substituent position of terminal group. Furthermore, gas adsorption measurements indicate that 4 possesses moderate CO(2) uptake and some adsorption selectivity for CO(2) over N(2).  相似文献   

7.
Five new coordination polymers based on a new 2,2'-bipyridine derived ligand N,N'-bis(pyridin-4-yl)-2,2'-bipyridine-5,5'-dicarboxamide (=L) are reported herein. Isostructural three-dimensional coordination polymers with a rare (4,6)-connected network of {4(4).6(2)}(3){4(6).8(9)}(2) topology were synthesised from Cu(NO(3))(2), Zn(NO(3))(2) or a mixture of Cu(NO(3))(2)/Fe(BF(4))(2) with L in complexes {[Cu(5)L(6)]·(NO(3))(10)·(H(2)O)(18)}(∞) (1), {[Zn(5)L(6)]·(NO(3))(10)·(H(2)O)(18)}(∞) (2) and {[Fe(x)Cu(y)L(6)]·(NO(3))(10)·(H(2)O)(18)}(∞) (3; where x+y=5). Complexes with two-dimensional grid structures resulted from treatment with CoCl(2) or Cd(NO(3))(2) with L in complexes {[CoLCl(2)]·DMF}(∞) (4) and {CdL(NO(3))(2)}(∞) (5).  相似文献   

8.
Three types of coordination polymers are formed together in one crystal when a linear bifunctional ligand of length 15.7 A is reacted with Cd(NO3)2 in the presence of mesitylene or m-xylene or o-xylene, which is also included in the crystal as a guest.  相似文献   

9.
By slow diffusion of triethylamine into a solution of 2,3,5,6-tetrafluoroterephthalic acid (H2tfBDC) and the respective lanthanide salt in EtOH/DMF single crystals of seven nonporous coordination polymers, (∞)(2)[Ln(tfBDC)(NO(3))(DMF)(2)]·DMF (Ln(3+) = Ce, Pr, Nd, Sm, Dy, Er, Yb; C2/c, Z = 8) have been obtained. In the crystal structures, two-dimensional square grids are found, which are composed of binuclear lanthanide nodes connected by tfBDC(2-) as a linking ligand. The coordination sphere of each lanthanide cation is completed by a nitrate anion and two DMF molecules (CN = 9). This crystal structure is unprecedented in the crystal chemistry of coordination polymers based on nonfluorinated terephthalate (BDC(2-)) as a bridging ligand; as for tfBDC(2-), a nonplanar conformation of the ligand is energetically more favorable, whereas for BDC(2-), a planar conformation is preferred. Differential thermal analysis/thermogravimetric analysis (DTA/TGA) investigations reveal that the noncoordinating DMF molecule is released first at temperatures of 100-200 °C. Subsequent endothermal weight losses correspond to the release of the coordinating DMF molecules. Between 350 and 400 °C, a strong exothermal weight loss is found, which is probably due to a decomposition of the tfBDC(2-) ligand. The residues could not be identified. The emission spectra of the (∞)(2)[Ln(tfBDC)(NO(3))(DMF)(2)]·DMF compounds reveal intense emission in the visible region of light for Pr, Sm, and Dy with colors from orange, orange-red, to warm white.  相似文献   

10.
The ligands 1,4-bis(2-pyridylmethylsulfanylmethyl)benzene (L1) and 2,5-bis(2-pyridylmethylsulfanylmethyl)pyrazine (L2) were treated with Cd(NO3)2.4H2O in metal-to-ligand ratios of 1:1 and 2:1, respectively; L2 was also treated with CdCl2.2.5H2O in a 2:1 ratio. All products were found to be coordination polymers. The crystal structures of {[Cd(L1)(NO3)2].CH2Cl2}infinity (1a), {[Cd(L1)(NO3)2].4/3CH3CN}infinity (1b), {[Cd2(L2)(NO3)4].2CH3CN}infinity (2.2CH3CN), and {[Cd2(L2)Cl4].2CH2Cl2}infinity (3.2CH2Cl2) were determined. Compounds 1a and 1b were found to be conformational supramolecular isomers. The structure of 1b displayed topological isomerism with two isomeric polymer chains, 1b(1) and 1b(2), in the one crystal forming a single supramolecular array. The structure of 2.2CH(3)CN showed Cd2(L2) units linked together by nitrates bridging between the Cd(II) centers in a mode previously not seen in Cd(II) compounds. The overall structure of 3.2CH2Cl2 was found to be similar to that of 2.2CH3CN despite the presence of different anions and solvent molecules. Powder X-ray diffraction was used to investigate the nature of bulk preparations of compounds 1-3.  相似文献   

11.
One-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) coordination polymers were prepared by self-assembly of binary metal complex systems, copper(II) nitrate and (en)Pt(II)(nic)(2) or (dmpda)Pt(II)(isonic)(2) (en = ethylenediamine, dmpda = 2,2'-dimethyl-1,3-propanediamine, nic = nicotinate, and isonic = isonicotinate), in aqueous solutions. Equimolar reactions of copper(II) nitrate with (dmpda)Pt(II)(isonic)(2) and (en)Pt(II)(nic)(2) resulted in 1-D ([(dmpda)Pt(isonic)(2)Cu(OH(2))(3)](NO(3))(2))(n)() (1) and 2-D ([(en)Pt(nic)(2)Cu(OH(2))](NO(3))(2))(n) (2), respectively, but the reaction of (en)Pt(II)(nic)(2) with excess copper(II) nitrate gave 3-D ([((en)Pt(nic)(2))(3)Cu(5)(OH)(2)(OH(2))(6)](NO(3))(8))(n) (3). The local structure of crystal 1 has a mononuclear copper unit, 2 has a dinuclear copper unit with a Cu-Cu distance of 2.659(5) A, and 3 has a pentanuclear copper unit. The methyl groups of the dmpda ligand are located in the space between two isonicotinate ligands of 1, which is presumed to be an important factor to determine the final structure of the crystal formed by self-assembly. Magnetic behaviors of crystals 1-3 examined in the temperature range of 4-300 K appear to be governed by the local structures around the copper(II) ions and do not indicate any significant long-range magnetic exchange interactions along the polymeric chain.  相似文献   

12.
Using two 4-substitued triazole ligands, 4-(pyrid-2-yl)-1,2,4-triazole (L(1)) and 4-(pyrid-3-yl)-1,2,4-triazole (L(2)), a series of novel triazole-cadmium(II) complexes varying from zero- to three-dimensional have been prepared and their crystal structures determined via single-crystal X-ray diffraction. [Cd(2)(micro(2)-L(1))(3)(L(1))(2)(NO(3))(mu(2)-NO(3))(H(2)O)(2)](NO(3))(2).1.75H(2)O (1) is a binuclear complex containing bidendate, monodedate and free nitrate anions. When the bridging anions SCN(-) and dca (dca = N(CN)(2)(-)) were added to the reaction system of 1, one-dimensional (1D) [Cd(L(1))(2)(NCS)(2)](n) (2) and two-dimensional (2D) [Cd(L(1))(2)(dca)(2)](n) (3) were isolated, respectively. When L(2) instead of L(1) was used, [Cd(L(2))(2)(NCS)(2)(H(2)O)(2)] (4) and 1D [Cd(L(2))(2)(dca)(2)](n) (5) were obtained. When the ratio of Cd to L(2) was changed from 1:2 to 1:1 in the reaction system of 5, three-dimensional (3D) {[Cd(3)(micro(2)-L(2))(3)(dca)(6)].0.75H(2)O}(n) (6) with 1D microporous channels along the a direction was isolated. Further investigations on other Cd(ii) salts and the L(2) ligand in a Cd to L(2) ratio of 1:1, an unexpected complex [Cd(mu(2)-L(2))(mu(3)-SO(4))(H(2)O)](n) (7) with a 3D open framework was obtained. All of the complexes exhibit strong blue fluorescence emission bands in the solid state at ambient temperature, of which the excitation and emission maxima are red-shifted to longer wavelength as compared to those in water. Powder X-ray diffraction and thermal studies were used to investigate the bulk nature of the 3D coordination polymers 6 and 7.  相似文献   

13.
Li JR  Bu XH  Zhang RH 《Inorganic chemistry》2004,43(1):237-244
The reactions of meso-1,2-bis(ethylsulfinyl)ethane (meso-L) with Ln(ClO(4))(3) [Ln(NO(3))(3) or Ln(NCS)(3)] in MeOH and CHCl(3) gave a series of new lanthanide coordination polymers, [[Ln(micro-meso-L)(rac-L)(2)(CH(3)OH)(2)](ClO(4))(3)](n) [Ln: La (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), and Yb (7)], [Yb(micro-meso-L)(1.5)(NO(3))(3)](n) (8), and [La(micro-meso-L)(2.5)(NCS)(3)](n) (9). All the structures were established by single-crystal X-ray diffraction. Complexes 1-7 are isostructural with infinite single micro-chain structure, in which the L ligands take two kinds of coordination modes: bidentate chelating and bis-monodentate bridging. Six sulfur atoms of the sulfoxide groups around each Ln(III) center adopt alternatively the same R or S configuration in the chain. In addition, the configuration change of partial ligands occurred from the meso to the rac form when reacting with Ln(ClO(4))(3). To our knowledge, this is the first example of disulfoxide complexes with two kinds of coordination modes and three kinds of configurations (R,R, S,S, and R,S) occurring simultaneously in the same complex. 8 exhibits single-double bridging chain structure, in which dinuclear macrometallacycles formed through bridging two Yb(III) by two meso-L ligands are further linked by another meso-L ligand. In 9 each La(III) ion is linked to five other La(III) ions by five meso-L ligands to form a 5-connected 2-D (3/4,5) network containing two types of macrometallacyclic arrays: quadrilateral and triangle grids. The structural differences among 1-7, 8, and 9 show that counteranions play important roles in the framework formation of such coordination polymers. In addition, the luminescent properties of 3 and 5 were also investigated.  相似文献   

14.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

15.
A series of new 1D chain and 2D coordination polymers with cyclotriguaiacylene-type ligands are reported. A zig-zag 1D coordination chain is found in complex [Cd(2)(4ph4py)(NO(3))(3)(H(2)O)(2)(DMA)(2)]·(NO(3))·(DMA)(4), where 4ph4py = tris[4-(4-pyridyl)benzoyl]-cyclotriguaiacylene and DMA = dimethylacetamide, while complex [Zn(4ph4py)(2)(CF(3)COO)(H(2)O)]·(CF(3)COO)(NMP)(7), where NMP = N-methylpyrrolidone, has a doubly bridged coordination chain structure. Complexes [M(3ph3py)(NO(3))(2)]·(NMP)(4) where M = Co or Zn, 3ph3py = tris[3-(3-pyridyl)benzoyl]cyclotriguaiacylene, are isostructural and feature 1D ladder coordination chains. Complexes [Cd(2)(4ph4py)(2)(NO(3))(4)(NMP)]·(NMP)(9)(H(2)O)(4) and [Co(4ph4py)(H(2)O)(2)]·(NO(3))(2)·(DMF)(2), where DMF = dimethylformamide, both have (3,4)-connected 2D coordination polymers with a rare (4(2).6(2))(4.6(2))(2) topology. A 2D coordination polymer with this topology is also found in complex [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)]·(NO(3))(3)·(DMF)(9) where 3ph4py = tris[3-(4-pyridyl)benzoyl]cyclotriguaiacylene. All 2D coordination polymer complexes are interpenetrating or polycatenating. [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)](3+)polymers form a 2D→3D polycatenation showing self-complementary "hand-shake" interactions between the host-type ligands.  相似文献   

16.
The reaction of metal ions, flexible aliphatic dicarboxylates and rigid bidentate linear ligands under mild conditions in water afford four novel metal-organic coordination polymers, [Cd(mu-mal)(mu-pyz)(0.5)(H(2)O)](n) 1 (mal = malonate dianion, pyz = pyrazine), [Cd(2)(mu-suc)(2)(mu-pyz)(H(2)O)(2)](n) 2 (suc = succinate dianion), and ([M(mu-bipy)(H(2)O)4][suc].4H(2)O)(n)(M = Co, 3, M = Zn, 4, bipy = 4,4'-bipyridine). The molecular structures of 1-4 have been established by single-crystal X-ray crystallography. 1 is a 3D network being composed of layers of octahedrally coordinated Cd atoms bridged by malonate anions in syn-anti configurations within the layers and pyz molecules between layers. Unlike that in 1, each Cd atom in 2 displays uncommon pentagonal-bipyramidal geometry to form 2D infinite grid sheets with square grid dimensions of ca. 7.936 x 7.936 [Angstrom]. Both 3 and 4 exhibit 1D linear -M-bipy-M-bipy- chain polymers, and these chains were packed as ...ABCABC... layered structures. The bridging succinate ligands in 2 adopt the syn-anti mode with a torsion angle of 60.8(7) degrees, while the solvated succinate ligands in 3 and 4 adopt the anti-anti mode with a torsion angle of 180.0 degrees. To our knowledge, compound 2 represents the first example of flexible self-assembled succinate-pyrazine mixed bridging ligand coordination network. 3 and 4 are the first two cases of succinate-bipy polymers with non-coordinated succinate. The magnetic behavior for 3 was studied in the temperature range of 5-300 K. The result indicates the occurrence of a weak antiferromagnetic coupling between the cobalt(II) ions.  相似文献   

17.
Wu CD  Zhang L  Lin W 《Inorganic chemistry》2006,45(18):7278-7285
Six homochiral coordination polymers 1-6 based on a new enantiopure elongated (S)-2,2'-diethoxy-1,1'-binaphthyl-6,6'-bis(4-vinylpyridine) ligand (L) and divalent metal (Zn, Cd, and Ni) connecting points were synthesized and characterized by single-crystal X-ray diffraction studies. These new homochiral coordination polymers adopt two distinct framework structures: a one-dimensional infinite chain structure with bridging L ligands occupying the axial positions of the metal centers and a two-dimensional rhombic grid structure formed by linking octahedrally coordinated metal centers with four pyridyl groups of bridging L ligands in the equatorial positions. The structures of these coordination polymers are sensitive to the nature of the anions as well as the solvents from which the coordination polymer crystals were grown. Powder X-ray diffraction studies showed that the two-dimensional chiral rhombic grids exhibited porosity, which could potentially find applications in enantioselective separations and catalysis.  相似文献   

18.
The Schiff base ligands 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene (L1, monoclinic, P2(1)/c, a = 3.856(1) A, b = 11.032(2) A, c = 12.738(3) A, beta = 92.21(3) degrees, Z = 2) and 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (L2, monoclinic, P2(1)/c, a = 10.885(2) A, b = 4.613(1) A, c = 14.978(3) A, beta = 92.827(4) degrees, Z = 2) were used in the synthesis of four new organic-inorganic coordination polymers, each of them adopting a different structural motif. Synthesis, X-ray structural determinations, and spectroscopic and thermogravimetric analyses are presented. The reaction between Co(NO(3))(2).6H(2)O and L1 afforded a two-dimensional noninterpenetrating brick-wall structure, [Co(C(12)N(4)H(10))(1.5)(NO(3))(2)(H(2)O)(CH(2)Cl(2))(2)](n)() (1, triclinic, P1; a = 10.242(7) A, b = 10.802(7) A, c = 15.100(1) A, alpha = 70.031(1), beta = 75.168(11), gamma = 76.155(11), Z = 2), while Ni(NO(3))(2).6H(2)O combined with L1 yielded an interpenetrating three-dimensional rhombus-grid polymer, [Ni(C(12)N(4)H(10))(2)(NO(3))(2)(OC(4)H(8))(1.66)(H(2)O)(0.33)](n) (2, monoclinic, C2/c; a = 20.815(8) A, b = 23.427(8) A, c = 17.291(6) A, beta = 116.148(6), Z = 8). The reaction of Co(NO(3))(2).6H(2)O and L2 was found to be solvent-sensitive and resulted in the formation of two different noninterpenetrating compounds: [Co(C(14)N(4)H(14))(2)(NO(3))(2)(C(6)H(6))(1.5)](n)() (3, monoclinic, C2/c; a = 22.760(2) A, b = 21.010(3) A, c = 25.521(2) A, beta = 97.151(2), Z = 8), which adopts a two-dimensional square-grid motif formed by propeller-type modules, and [Co(C(14)N(4)H(14))(1.5)(NO(3))(2)(CH(2)Cl(2))(2)](n)() (4, monoclinic, P2(1)/n; a = 14.432(2) A, b = 14.543(8) A, c = 15.448(4) A, beta = 96.968(0), Z = 4), consisting of T-shaped building blocks assembled into a one-dimensional ladder-type structure. These four coordination polymers all exhibit impressive thermal stability. Thermogravimetric studies showed that after complete removal of the solvents, the frameworks are stable to temperatures between 234 degrees C and 260 degrees C.  相似文献   

19.
Shin DM  Lee IS  Chung YK  Lah MS 《Inorganic chemistry》2003,42(18):5459-5461
Self-assembly between simple unsymmetrical ligands, such as 1-(3-pyridyl)-2-(4-pyridyl)ethene (L(1)) and 1-methyl-1'-(3-pyridyl)-2-(4-pyrimidyl)ethene (L(2)), and Co(NCS)(2) affords the unprecedented two-dimensional grid coordination polymers [Co(L(1))(2)(NCS)(2)](infinity) (1) and [Co(L(2))(2)(NCS)(2)](infinity) (2), respectively, with novel topological features which cannot be achieved using symmetrically bridging ligands.  相似文献   

20.
The N(2)-donor bidentate ligands di(1H-indazol-1-yl)methane (L(1)) and di(2H-indazol-2-yl)methane (L(2)) (L in general) have been synthesized, and their coordination behavior toward Zn(II), Cd(II), and Hg(II) salts has been studied. Reaction of L(1) and L(2) with ZnX(2) (X = Cl, Br, or I) yields [ZnX(2)L] species (1-6), that, in the solid state, show a tetrahedral structure with dihapto ligand coordination via the pyrazolyl arms. The reaction of L(1) and L(2) with Zn(NO(3))(2)·6H(2)O is strongly dependent on the reaction conditions and on the ligand employed. Reaction of L(1) with equimolar quantities of Zn(NO(3))(2)·6H(2)O yields the neutral six-coordinate species [Zn(NO(3))(2)(L(1))], 7. On the other hand the use of L(1) excess gives the 2:1 adduct [Zn(NO(3))(2)(L(1))(2)], 8 where both nitrates act as a unidentate coordinating ligand. Analogous stoichiometry is found in the compound obtained from the reaction of L(2) with Zn(NO(3))(2)·6H(2)O which gives the ionic [Zn(NO(3))(L(2))(2)](NO(3)), 10. Complete displacement of both nitrates from the zinc coordination sphere is observed when the reaction between L(1) excess and the zinc salt was carried out in hydrothermal conditions. The metal ion type is also determining structure and stoichiometry: the reaction of L(2) with CdCl(2) gave the 2:1 adduct [CdCl(2)(L(2))(2)] 11 where both chlorides complete the coordination sphere of the six-coordinate cadmium center; on the other hand from the reaction of L(1) with CdBr(2) the polynuclear [CdBr(2)(L(1))](n) 12 is obtained, the Br(-) anion acting as bridging ligands in a six-coordinate cadmium coordination environment. The reaction of L(1) and L(2) with HgX(2) (X = Cl, I, SCN) is also dependent on the reaction conditions and the nature of X, two different types of adducts being formed [HgX(L)] (14: L = L(1), 16, 17: L = L(1) or L(2), X = I, 19: L = L(2), X = SCN) and [HgX(L)(2)] (15: L = L(2), X = Cl, 18: L = L(1), X = SCN). The X-ray diffraction analyses of compounds 1, 2, 4, 5, 7, 8, 10-12, 14, 15, and 19 are also reported. The variations of the coordination geometry parameters in the complexes are compared and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号