首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight commercially available sub-2 microm octadecyl silane columns (C18 columns) have been characterised by the Tanaka protocol. The columns can be grouped into two groups that display large differences in selectivity and peak shape due to differences in hydrophobicity, degree of surface coverage and silanol activity. Measurements of particle size distributions were made using automated microscopy and electrical sensing zone measurements. Only a weak correlation could be found between efficiency and particle size. Large differences in column backpressure were observed. These differences are not related to particle size distribution. A more likely explanation is differences in packing density. In order to take full advantage of 100-150 mm columns packed with sub-2 microm particles, it is often necessary to employ not only an elevated pressure but also an elevated temperature. A comparison between columns packed with sub-2, 3 and 5 microm versions of the same packing indicates potential method transferability problems for several of the columns due to selectivity differences. Currently, the best alternative for fast high-resolution LC is the use of sub-2 microm particles in combination with elevated pressure and temperature. However, as shown in this study additional efforts are needed to improve transferability as well as column performance.  相似文献   

2.
To study the influence of the particle size distribution (PSD), we measured the chromatographic performance of a series of sub-2 microm particle high performance liquid chromatography (HPLC) columns packed with four different particle mixtures having a purposely imposed different size distribution. Using the reduced kinetic plot representation by plotting the separation impedance (E(0)) versus the plate number ratio (N(opt)/N), the different columns could be classified according to their chromatographic performance without the need to specify a mean particle diameter or a molecular diffusion coefficient, as is needed in the classical reduced plate height and flow resistance analysis. The present analysis shows that it is not so much the width or span of the particle size distribution, but rather the presence of fines that greatly determines the chromatographic performance of particulate columns.  相似文献   

3.
In this study, ultra performance liquid chromatography (UPLC) using pressures up to 1,000 bar and columns packed with sub-2 microm particles has been combined with high temperature mobile phase conditions (up to 90 degrees C). By using high temperature ultra performance liquid chromatography (HT-UPLC), it is possible to drastically decrease the analysis time without loss in efficiency. The stability and chromatographic behavior of sub-2 microm particles were evaluated at high temperature and high pressure. The chromatographic support remained stable after 500 injections (equivalent to 7,500 column volumes) and plate height curves demonstrated the capability of HT-UPLC to obtain fast separations. For example, a separation of nine doping agents was performed in less than 1 min with sub-2 microm particles at 90 degrees C. Furthermore, a shorter column (30 mm length) was used and allowed a separation of eight pharmaceutical compounds in only 40s.  相似文献   

4.
Rapid ion chromatographic separations of small inorganic anions are performed on columns packed with high-pH resistant Zorbax Extend-C18 1.8 microm silica particles. Seven anions (iodate, chloride, nitrite, bromide, nitrate, phosphate, sulphate) are separated with 1.3 and 2 cm long x 0.46 cm I.D. C18 columns coated with the surfactant didodecyldimethylammonium bromide (DDAB). A 40 s separation is achieved at 2 mL/min with a 2.5 mM 4-hydroxybenzoic acid eluent at pH 10. Finally, the DDAB removal procedure is improved to eliminate the pressure build-up caused by precipitation of the surfactant in the column upon uncoating.  相似文献   

5.
To contribute to the current debate about the "ideal" particle size range (sub-2mum vs. supra-2mum), the present study compares the kinetic performance of some commercially available sub-2mum and 3.5mum particles used under quasi-adiabatic conditions via the kinetic plot method. Under the adopted assumption that viscous heating effects can be neglected (which is uncertain in a pressure range above 400bar), the obtained kinetic plots show that, provided each particle size is used in a column with properly optimized length, the gain in separation speed that sub-2mum particle columns might have over maximally performing 2.5mum particle columns is very small. Sub-2mum particle columns can only yield a gain in separation speed in the range of high-speed/low-resolution-separations (total time based on k=10 below 5 or 10min). And even in this range, the actual gain that can be expected is only marginally small (only a few %). The present study hence suggests that the development and the use of particles in the 2-3mum range should deserve more attention than it did in the past few years. However, to be competitive, this 2-3mum material should be packed in relatively long columns, with a packing quality matching that of the current best performing 3.5mum particle columns. The supra-2mum particles should also be able to withstand the same pressures as the sub-2mum particle material one is comparing it to.  相似文献   

6.
The average mesopore size of the new Halo-ES-Peptide shell particles is 160 ?, markedly larger than that of the classical Halo shell particles (90 ?). We found that this change causes a considerable decrease of the film mass transfer resistance measured for columns packed with these particles. We analyze data obtained by systematic measurements of the C term of the van Deemter equation for the peptide β-lipotropin (MW = 769 Da), the protein insulin (MW = 5800 Da), and a series of non-retained polystyrene standards (MW = 6400 and 13,200). The improvement in column performance is explained by an increase of the fraction of the external surface area of the shell that allows the entrance of the sample molecules inside the particle. The fraction of the shell surface accessible to a probe controls the rate of its external film mass transfer, i.e. its rate of transfer between the interstitial and the stagnant eluent. Although measurable, the increase in sample diffusivity through the porous shells does not account for the better performance of Halo-ES-peptide columns. Furthermore, the analysis of the HETPs data of small molecules (uracil, acetophenone, toluene, and naphthalene, MW< 150) reveals that the eddy diffusion (A) term of these new columns is 25% lower than that of the classical Halo columns. This result is consistent with the impact of intra-particle diffusivity on the eddy diffusion mechanism in packed columns. As shell diffusivity increases, so does the rate of transfer of sample molecules between the eluent stream-paths flowing through the packed particles and across the column diameter. Dispersion through short-range inter-channel and trans-column eddies is reduced.  相似文献   

7.
A mathematical model is constructed and solved that could describe the dynamic behavior of the adsorption of a solute of interest in single and stratified columns packed with partially fractal porous adsorbent particles. The results show that a stratified column bed whose length is the same as that of a single column bed, provides larger breakthrough times and a higher dynamic utilization of the adsorptive capacity of the particles than those obtained from the single column bed, and the superior performance of the stratified bed becomes especially more important when the superficial velocity of the flowing fluid stream in the column is increased to accommodate increases in the system throughput. This occurs because the stratified column bed provides larger average external and intraparticle mass transfer and adsorption rates per unit length of packed column. It is also shown that increases in the total number of recursions of the fractal and the ratio of the radii between larger and smaller microspheres that make up the partially fractal particles, increase the intraparticle mass transfer and adsorption rates and lead to larger breakthrough times and dynamic utilization of the adsorptive capacity of the particles. The results of this work indicate that highly efficient adsorption separations could be realized through the use of a stratified column comprised from a practically reasonable number of sections packed with partially fractal porous adsorbent particles having reasonably large (i) total number of recursions of the fractal and (ii) ratio of the radii between larger and smaller microspheres from which the partially fractal particles are made from. It is important to mention here that the physical concepts and modeling approaches presented in this work could be, after a few modifications of the model, applied in studying the dynamic behavior of chemical catalysis and biocatalysis in reactor beds packed with partially fractal porous catalyst particles.  相似文献   

8.
9.
The separation of the tryptic digests of myoglobin and bovine serum albumin were carried out in the gradient elution mode, using water, acetonitrile and TFA as the mobile phase components and columns packed with a new type of shell particles, Halo C(18). These particles give very high efficiencies, characterized with an unusually low eddy diffusion contribution and a small mass transfer contribution. However, because the molecular diffusivities of the peptides in the digest are small, the mobile phase velocity corresponding to the optimum velocity for maximum efficiency is also small, of the order of 0.3 mm/s. The gradient slopes also must be small. Peak capacities of 400 were achieved, with analysis time of the order of an hour.  相似文献   

10.
Three HPLC columns packed with 3 μm, sub‐2 μm, and 2.7 μm Fused‐Core (superficially porous) particles were compared in separation performance using two natural product mixtures containing 15 structurally related components. The Ascentis ExpressTM C18 column packed with Fused‐Core particles showed an 18% increase in column efficiency (theoretical plates), a 76% increase in plate number per meter, a 65% enhancement in separation speed and a 19% increase in back pressure compared to the Atlantis T3TM C18 column packed with 3 μm particles. Column lot‐to‐lot variability for critical pairs in the natural product mixture was observed with both columns, with the Atlantis T3 column exhibiting a higher degree of variability. The Ascentis Express column was also compared with the AcquityTM BEH column packed with sub‐2 μm particles. Although the peak efficiencies obtained by the Ascentis Express column were only about 74% of those obtained by the Acquity BEH column, the 50% lower back pressure and comparable separation speed allowed high‐efficiency and high‐speed separation to be performed using conventional HPLC instrumentation.  相似文献   

11.
Chromatographic columns packed with shell particles are now nearly twice more efficient than columns packed with conventional, fully porous particles. Shell particles are made of a solid core surrounded by a porous shell of constant thickness. Diffusion through the bed of packed columns is complex due to their heterogeneity. It involves diffusion through the external and the internal fluid, and surface diffusion. Six diffusion models are compared that combine these diffusion mechanisms. They involve the external porosity of the bed (?(e)), the ratio of the core to the particle diameters (ρ), and the ratio of the shell diffusivity to the bulk diffusion coefficient (Ω). Four different theoretical approaches were considered. They are based on (1) the additivity of the mass flux densities modulated by the obstruction factors caused by non-porous spherical inclusions; (2) the effective medium theory of Landauer; (3) the effective medium theory of Garnett for spherical inclusions; and (4) the probabilistic theory of Torquato (for binary composite materials only). The two Landauer models fail because they cannot account for the obstruction factor imposed by the presence of non-porous spherical inclusions. The ternary Garnett model (3) provides an excellent approximation of the actual diffusion mechanism but the most physically relevant model seems to be the one derived from a combination of the Garnett model for a binary core-shell particle and of the Torquato model for random dispersion of contacting spheres in a matrix. Accurate measurements of axial dispersion coefficients are needed to validate or reject the semi-empirical parallel diffusion models and to select the most appropriate one. The results of such measurements made with the peak parking method for various compounds are reported in the companion paper.  相似文献   

12.
Capillary columns of 0.3–0.35 mm internal diameter and 0.3–7.7 m length, packed with 3 to 30 μm octadecylsilica stationary phases as used for liquid chromatography, were applied to gas chromatographic separation of low boiling hydrocarbons. Van Deemter plots for these columns showed the optimum column efficiency to occur at linear velocities of 4–5 cm/s. A short column was applied to the rapid separation of components of a natural gas and impurities in standard gases, while a long column was applied to the separation of complex mixtures.  相似文献   

13.
The performance of the new Kinetex-C18 column was investigated. Packed with a new brand of porous shell particles, this column has an outstanding efficiency. Once corrected for the contribution of the instrument extra column volume, the minimum values of the reduced plate heights for a number of low molecular weight compounds (e.g., anthracene and naphtho[2,3-a]pyrene) were between 1.0 and 1.3, breaking the legendary record set 3 years ago by Halo-C18 packed columns. The liquid-solid mass transfer of proteins (e.g., insulin and lyzozyme) is exceptionally fast on Kinetex-C18 much faster than on the Halo-C18 column. The different contributions of dispersion and mass transfer resistances to the column efficiency were determined and discussed. The possible reasons for this extremely high column efficiency are discussed.  相似文献   

14.
Coupling several 25 cm × 2 mm ID analytical columns together is a simple and easy way to achieve high resolution HPLC (20,000–50,000 plates). How to do this with commercially available instruments, injectors and detectors is described in the paper. An attractive feature of the long narrow column approach is that the same HPLC set-up can be used for both fast-low and slow-high efficiency separations. High efficiency is essential for really complex natural mixtures, e.g. the hop and beer bitter acids. Some examples are shown.  相似文献   

15.
The behavior of 15 benzimidazoles, including their main metabolites, using several C18 columns with standard or narrow‐bore diameters and different particle size and type were evaluated. These commercial columns were selected because their differences could affect separation of benzimidazoles, and so they can be used as alternative columns. A simple screening method for the analysis of benzimidazole residues and their main metabolites was developed. First, the separation of benzimidazoles was optimized using a Kinetex C18 column; later, analytical performances of other columns using the above optimized conditions were compared and then individually re‐optimized. Critical pairs resolution, analysis run time, column type and characteristics, and selectivity were considered for chromatographic columns comparison. Kinetex XB was selected because it provides the shortest analysis time and the best resolution of critical pairs. Using this column, the separation conditions were re‐optimized using a factorial design. Separations obtained with the different columns tested can be applied to the analysis of specific benzimidazoles residues or other applications.  相似文献   

16.
The use of sub-2-microm particle columns for fast high throughput metabolite ID applications was investigated. Three LC-MS methods based on different sub-2-microm particle size columns using the same analytical 3 min gradient were developed (Methods A, B, and C). Method A was comprised of a 1.8 microm particle column coupled to an MS, methods B and C utilized a 1.7 microm particle column (BEH 50 x 2.1 mm2 id) and 1.8 microm particle column coupled to a Q-TOF MS. The precision and the separation efficiency of the methods was compared with repeated standard injections (N=10) of reference compounds verapamil (VP), propranolol, and fluoxetine. Separation efficiency and MS/MS spectral quality were also evaluated for separation and detection of VP and its two major metabolites norverapamil (NVP) and O-demethylverapamil (ODMVP) in human-liver microsomal incubates. Results show that 1.8 microm particle columns show similar performance for separation of VP and its major metabolites and comparable spectral quality in MS(E) mode of the Q-TOF instrument compared to 1.7 microm particle columns. Additionally, the study also confirmed that sub-2-microm particle size columns can be operated with standard analytical HPLC but that performance is maximized by integrating column in UPLC method with reduced void volumes. All the methods are suitable for the determination of major metabolites for compounds with high metabolic turnover. The high throughput metabolite profile analysis using 384-well plate format of up to 48 compounds in incubates of human-liver microsomes was discussed.  相似文献   

17.
The use of chloramphenicol (CAP)--a highly effective broad-spectrum antibiotic used in animal husbandry--is banned in many countries. Therefore, a very low minimum required performance limit (MRPL) of 0.3 microg/kg CAP in meat for human consumption has been defined. Analytical methods capable of quantifying and confirming such low residue levels require sophisticated instrumentation. Preferably sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) or gas chromatography/mass spectrometry (GC/MS) methods have been used. This paper suggests the use of sub-2 microm particulate high-performance liquid chromatography (HPLC) columns to gain additional sensitivity and improve resolution as well as speed. Depending on the operating conditions, higher chromatographic resolution and speed can be obtained at the price of a significantly increased operating pressure, requiring dedicated LC equipment. A 3-4-fold overall improvement of the signal-to-noise ratio for CAP was obtained compared to more classical 5 microm particulate HPLC columns. The proposed analytical methodology includes an enzymatic digestion, which liberates glucuronide-bound CAP from kidney tissue. The extracts obtained after an Extrelut clean-up are sufficiently pure to permit routine injection of biological samples into the sub-2 microm particulate HPLC column, without observing rapid deterioration of peak shape or column clogging problems. The time for one chromatographic run was 4.2 min. The described method was validated for two particularly difficult matrices (kidney and honey). Decision limits (CC alpha) were 0.007 microg/kg (honey) und 0.011 microg/kg (kidney), which are significantly below the current MRPL.  相似文献   

18.
Apart from extracolumn effects peak dispersion in liquid chromatographic columns is caused by the column inlet, the packed bed, and the column outlet. A strategy applicable for independent evaluation of the individual sources of column band broadening was developed on the basis of the linear extrapolation method (LEM). This method was applied to compare the performance of packed capillary LC columns from various commercial suppliers with conventional-size columns. The columns differed widely in their performance with respect to peak shapes and widths for standard substances. The capillary columns were found well packed, but in some cases overall performance would benefit from improving the design of the area between the packed bed and the connecting capillaries, containing frits as well as dead volumes.  相似文献   

19.
The performance of 5 and 15 cm long columns packed with shell particles (Halo, AMT) is compared in gradient elution separations of the tryptic digests of myoglobin and bovine serum albumin. The influences of the temperature and the mobile phase flow rate on the column efficiency for two peptides are discussed. The influences of this flow rate, of the temperature, and of the gradient slopes on the peak capacities are also considered. Peak capacities in excess of 400 were achieved in 6h with the longer column. Peak capacities of 200 could be achieved in 30 min with the shorter column.  相似文献   

20.
We determine the interparticle porosities of commercially available, analytical, reversed-phase HPLC columns by Donnan exclusion of a small, unretained, co-ionic tracer (nitrate ions). The columns contained packings of C(18)-modified, endcapped, silica particles, which differed in their nominal particle diameters (1.8-5 μm) and construction (fully porous or core-shell). Experiments were carried out by monitoring the elution volumes of nitrate samples in a mobile phase of acetonitrile/water 80:20 v/v at increasing concentrations of Tris-HCl buffer (pH 8.1) from 0.01 to 60 mM. At low buffer concentrations, nitrate ions are completely electrostatically excluded from the intraparticle mesopore space, which is reflected by a plateau region in the elution curves. The elution volume in the plateau region equals the interparticle void volume. Clearly defined plateau regions were observed for all columns, even those densely packed with core-shell and sub-2 μm particles, enabling the accurate determination of interparticle porosities to three decimal places in a fast and convenient way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号