首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王登峰  梁继然  李昌青  闫文君  胡明 《中国物理 B》2016,25(2):28102-028102
In this work, we report an enhanced nitrogen dioxide(NO_2) gas sensor based on tungsten oxide(WO_3)nanowires/porous silicon(PS) decorated with gold(Au) nanoparticles. Au-loaded WO_3 nanowires with diameters of 10 nm–25 nm and lengths of 300 nm–500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy(HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO_3 nanowires. The effect of the Au nanoparticles on the NO_2-sensing performance of WO_3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm–5 ppm of NO_2 at room temperature(25℃). It is found that the 10-? Au-loaded WO_3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO_3 nanowires/porous silicon is also discussed.  相似文献   

2.
A. Berk    F. Solymosi 《Surface science》1998,400(1-3):281-289
A method for independent control of the particle size and distance is presented for rhodium epitaxy on TiO2(110)-(1×2) surface. The real space imaging of the surface morphology was performed by scanning tunneling microscopy. The amount of the deposited rhodium was checked by Auger electron spectrometry. The method consists of two steps: (i) evaporation of 0.001–0.050 ML equivalent of rhodium at room temperature with a post-annealing at 1100 K (“seeding”); (ii) post-deposition of rhodium for growing of the Rh nanoparticles formed in step (i) (“growing”). The mechanism of this procedure is based on the large difference of the surface diffusion coefficient between Rh adatoms and Rh nanocrystallites larger than 1–2 nm. In the first step the average distance between the metal particles is controlled in the range 5–200 nm, the second step determines the particles size (2–50 nm). This work demonstrates that the diffusion processes of metal nanoparticles of different sizes and the growing modes of the crystallites can be studied in detail by application of seeded surfaces.  相似文献   

3.
Deposition of Au nanoparticles from aqueous HF onto H–Si(1 1 1) was studied in situ by surface second harmonic generation (SHG) and ex situ by extinction spectroscopy and non-contact atomic force microscopy (AFM). AFM measurements indicate that the maximum SHG intensities occur at lateral particle diameters of approximately 90–100 nm independent of solution phase composition, but with an intensity that depends on solution phase composition.

Employing the evolution of SHG intensity to monitor lateral cluster growth, simultaneous Au deposition and Si oxidation exhibit apparent kinetic reaction orders of 1/2 and zero with respect to HF and Au(CN)2, respectively. These results are similar to those obtained purely from ex situ AFM analysis. The variations in SHG intensity with Au(CN)2 concentration can be related to particle nucleation densities. These results demonstrate the utility of SHG as an in situ probe of particle growth.  相似文献   


4.
Mo, Au and their coadsorbed layers were produced on nearly stoichiometric and oxygen-deficient titania surfaces by physical vapor deposition (PVD) and characterized by low energy ion scattering (LEIS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and scanning tunnelling microscopy (STM). The behavior of Au/Mo bimetallic layers was studied at different relative metal coverages and sample temperatures.

STM data indicated clearly that the deposition of Au on the Mo-covered stoichiometric TiO2(1 1 0) surface results in an enhanced dispersion of gold at 300 K. The mean size of the Au nanoparticles formed at 300 K on the Mo-covered TiO2(1 1 0) was significantly less than on the Mo-free titania surface (2 ± 0.5 nm and 4 ± 1 nm, respectively). Interestingly, the deposition of Mo at 300 K onto the stoichiometric TiO2(1 1 0) surface covered by Au nanoparticles of 3–4 nm (0.5 ML) also resulted in an increased dispersity of gold. The driving force for the enhanced wetting at 300 K is that the Au–Mo bond energy is larger than the Au–Au bond energy in 3D gold particles formed on stoichiometric titania. In contrast, 2D gold nanoparticles produced on ion-sputtered titania were not disrupted in the presence of Mo at 300 K, indicating a considerable kinetic hindrance for breaking of the strong Au-TiOx bond.

The annealing of the coadsorbed layer formed on a strongly reduced surface to 740 K did not cause a decrease in the wetting of titania surface by gold. The preserved dispersion of Au at higher temperatures is attributed to the presence of the oxygen-deficient sites of titania, which were retained through the reaction of molybdenum with the substrate. Our results suggest that using a Mo-load to titania, Au nanoparticles can be produced with high dispersion and high thermal stability, which offers the fabrication of an effective Au catalyst.  相似文献   


5.
In PbWO4(PWO) crystals grown by Czochralski method the influence of atmosphere of the growth (O2, air) and doping with the rare-earth ions of different types (A3+=Lu3+, Gd3+,Tb3+,Eu3+ as well as doubly doped A3+–Li+) on light yield and luminescence decay were analyzed. PWO scintillator with the ultra-fast (τ=0.5 ns) main component of luminescence decay (87% of total light yield) was obtained using the O2-growth atmosphere and doping by Eu2O3 at a concentration of 5000 ppm. It is concluded that the decrease of decay constant of the main scintillation component is the result of the resonant energy transfer between the centers of “blue” PWO luminescence (λmax=420 nm) and the 4f–4f-transitions of Eu3+ ions in this spectral region.  相似文献   

6.
Here, we demonstrate a “plug and play” approach to achieve multi-functionalization of Si. In this approach, externally synthesized functional nanoparticles are introduced onto device quality Si wafers and the surface chemical bonds are manipulated. Sonochemically synthesized Fe2O3 nanoparticles are introduced onto Si from an alcohol suspension. On annealing this sample in ultra-high vacuum, the oxygen atoms change the bonding partner from Fe to Si and desorb as SiO at 750 °C. This results in the formation of nanoparticles of Fe on the surface and exhibits ferromagnetic behavior. Deposition of a thin layer (2 nm) of Si onto the sample containing the metallic Fe nanoparticles followed by annealing at 560 °C leads to optically active Si. Photoluminescence measurements show that this sample emits light at three different wavelengths, namely 1.57, 1.61 and 1.63 μm, when excited by He–Ne or Ar lasers. Oxidation of this material results in the formation of a selective capping layer of SiO2. Thus we obtain multi-functional Si in an “all in one” form and we believe that this approach is universal.  相似文献   

7.
A novel and simple method for the colorimetric quantitative sensing of individual alkali metal ions (Li+, Na+, K+, and Rb+) based on the reversible properties of self-assembled aggregates and individual gold nanoparticles (Au NPs) is described. This paper demonstrates reversible self-assembly processes where the degree of assembly and disassembly is dependent on the individual alkali metal ion concentration, nanoparticle size, and alkali metal ionic radii. The color changes of the colloidal Au NPs with metal ion concentrations in colloidal NP solutions occur reversibly. Below a certain concentration of alkali metal ions, the aggregates of Au NPs are redispersed. As the Au NP diameters and the alkali metal ionic radii increase, the critical concentration decreases.  相似文献   

8.
In an attempt to identify the fundamental processes that influence ion transport through metallic surface layers, we have studied the transmission of O+ ions through discontinuous Au films adsorbed on TiO2(110). A low energy (< 10 eV) O+ ion beam is generated via electron stimulated desorption when an Au-dosed TiO2(110) substrate is bombarded with a focused 250 eV electron beam. Low energy ion scattering data indicate that Au evaporated under ultrahigh vacuum conditions at 300 K forms three-dimensional clusters on TiO2(110). As the Au coverage increases, the formation of Au clusters on TiO2(110) blocks a fraction of the TiO2 surface and the O+ yield is attenuated. However, for high coverages (≥30% Au covered substrate) the O+ signal decreases at a faster rate than the TiO2 open area fraction. We attribute the attenuation of the O+ yield for high Au coverages mainly to blocking of O+ by Au clusters, to deflection of trajectories by the image force between ions and Au clusters, and to charge transfer between desorbing O+ and neighboring Au clusters.  相似文献   

9.
Non-contact atomic force microscopy (AFM) was employed following emersion to examine Au nanoclusters deposited from aqueous mixtures of HF and 10−4 M KAu(CN)2 onto Si(111). As the HF concentration is increased, the growth rates both parallel and perpendicular to the substrate of the approximately oblate Au hemispheroids increase. AFM images were obtained for times at which previously reported in situ second harmonic generation signals from the interface reach a maximum. At the time when the second harmonic enhancement is maximized during deposition from 0.500 (5.00) M HF, the Au nanoclusters have an average diameter of 94 (109) nm and an average height of 3.6 (9.5) nm. These cluster diameters can be understood qualitatively by the shift of the plasmon resonance due to depolarization as the cluster size increases, causing the resonant second harmonic enhancement at 532 nm to pass through a maximum at cluster diameters in the range 90–110 nm.  相似文献   

10.
Nanoparticles of zinc-doped maghemite were prepared using ultrasonic radiation. As a precursor, a suspension of maghemite in an alkaline aqueous solution of zinc nitrate at pH 9 was sonicated. The zinc-doped maghemite nanoparticles were investigated by X-ray diffraction, Mössbauer spectroscopy, high-resolution electron microscopy (HREM) and SQUID magnetometry. The Mössbauer measurements, which cover the temperature range 4.2 K to room temperature, were acquired in zero field and an applied field of 5 T. The results show that by using ultrasound radiation, zinc Zn2+ can substitute for Fe3+ up to a composition close to zinc ferrite (ZnFe2O4), which has a random distribution of Fe3+ ions over both A and B sublattices in the spinel structure with an inversity parameter of δ = 0.322. This leads to a maximum saturation magnetization (Ms) of 64.1 emu/g at 300 K and 73.5 emu/g at 2 K.  相似文献   

11.
Physical and chemical properties of bimetallic surfaces   总被引:2,自引:0,他引:2  
Recent studies dealing with the structural, electronic, chemical and catalytic properties of well-defined bimetallic surfaces are reviewed. LEED and STM show that two metals interacting on a surface can form compounds with structures not seen in bulk alloys. Many novel phenomena related to the kinetics of growth of metals on metals have been discovered. The knowledge gathered in this area provides a solid basis for the synthesis of new materials with applications in areas of catalysis, electro-chemistry and microelectronics. In many cases, the formation of a surface bimetallic bond induces large changes in the band structure of the metals. For surfaces that contain transition or s,p metals, the strongest metal-metal interactions occur in systems that combine a metal with a valence band almost fully occupied and a metal in which the valence band is almost empty. A very good correlation is found between the electronic perturbations in a bimetallic system and its cohesive energy. Bimetallic bonds that display a large stability usually involve a significant redistribution of charge around the metal centers. The electronic perturbations affect the reactivity of the bonded metals toward small molecules (CO, NO, H2, O2, S2, C2H4, CH3OH, etc.). For supported monolayers of Ni, Pd, Pt and Cu a correlation is observed between the shifts in surface core-level binding energies and changes in the desorption temperature of CO from the metal adlayers. Examples are provided which demonstrate the utility of single-crystal studies for understanding the role of “ensemble” and “ligand” effects in bimetallic catalysts.  相似文献   

12.
We report on IV characteristics for in situ formed Nb/Au/(1 1 0)YBa2Cu3O7−δ (YBCO) Josephson junction, where the homoepitaxial (1 1 0)YBCO film shows ultra-smooth surface morphology. The field dependence of critical supercurrent Ic shows anisotropic large junction behavior with normal Fraunhofer patterns expected from BCS model of dx2y2 wave superconductors. This strongly suggests that the Nb/Au/(1 1 0)YBCO junctions cannot be regarded as atomic scaled corner junctions, in contrast with (0 0 1)/(1 1 0)YBCO grain boundary junctions to show “π-junction” with a pronounced dip near zero fields in field modulation of Ic.  相似文献   

13.
In-situ FT-IR spectroscopic and desorption detection schemes have been used to observe, characterize and quantify electron-induced modifications of self-assembled monolayers (SAMs) of organic molecules chemisorbed to highly ordered metal surfaces. In the case of n-alkanethiol SAMs/Au(111) surfaces, the cross-sections for C---H bond rupture at the terminal methyl groups have onsets with incident energies near Ei7 eV and well-resolved maxima at Ei10 eV, indicating that dissociative electron attachment is the primary step of the excitation-dissociation process. The systematic differences between the depletion of the ---CH3 and ---CH2-functional groups on the surface, detected using infrared spectroscopy, show that molecular desorption of entire n-alkane chains is not a significant process, despite the S---Au(111) bond being the weakest of the system. The dissociation cross-sections increase with increasing chain length, indicating that the dissociation dynamics are strongly affected by the distance to the metal substrate, presumably via a dipole-damping process; we have used this behaviour to estimate that the excited state lifetimes for these systems are 2–10 fs. Chemisorption of “target” species to stable metal substrates appears to be a general approach for the study of electron-molecule interactions and condensed phase processes in molecular systems at ambient temperatures.  相似文献   

14.
On embedding in poly(bisphenol A carbonate) film, La@C82 has featured the exclusive stability against oxygen for more than 1 year's storage of the polymer films on air. The EPR spectral parameters of La@C82 have occurred to be sensitive to the segmental mobility and the phase transition of the polymer from the glassy to the high-elasticity state. Furthermore, the intense matrix 1H-electron nuclear double resonance (ENDOR) signal discovered in this system testifies the partial transfer of the electron spin density outside the fullerene cage onto the polymer protons. The 139La NMR spectrum of the same suggests that La@C82 forms nanoparticles, in which the metal atoms strongly interact with the delocalized electrons. The “spin-leakage” of the fullerene shell, along with the tendency of endohedral fullerenes (EMF) to form nanoparticles, is worth consideration in sight of their applications in material sciences.  相似文献   

15.
Although Ag and Au are commonly used to provide low-resistance contacts to YBa2Cu3O7 (YBCO), their effect on the electrical properties of the underlying YBCO has been largely neglected. Epitaxial YBCO thin films on LaAlO3 substrates were used in this study. Thin (50 nm) and thick (1 μm) layers of Ag or Au were deposited as overlayers, and in some cases annealed in oxygen at 550–650°C. Compared to samples with no metal overlayers, for both Ag and Au the normal-state parameters changed (resistivity, its temperature coefficient, and the transition width), whereas the transition temperature and critical current density remained unaltered. These results are encouraging for the use of these metals as contacts and/or conducting overlayers on YBCO.  相似文献   

16.
A new kind of MoO3/Au film was prepared by depositing Au nanoparticles on the surface of MoO3 thin film through spin-on coating technique. After cathodic polarization, the MoO3/Au thin film was found to show enhanced visible-light coloration compared with MoO3 thin films. The formation of Schottky barrier at the MoO3/Au interface, and the visible-light coloration mechanism of the MoO3/Au film are elucidated by the energy band theory based on surface photovoltaic spectroscopy measurements.  相似文献   

17.
Surface sensitive spectroscopies were employed to investigate the surface modifications which occur on SiO2 during actual reactive ion and plasma etching in CF4 and CF4/O2 plasmas. Photoemission and electron energy loss spectroscopies were used to characterize the composition and bonding in the modified layer. Core level photoemission measurements indicated a reaction layer 10–15 Å thick with a mean composition of SiOF2. Photoemission and EELS studies of the valence bands identified several features due to Si---F bonding. Comparisons with the SiO2 valence bands and implications for bonding are discussed. Electron energy loss spectra were also used to determine if ion induced “defect” species formed during reactive etching persist in the reaction layer. A comparison of reactive ion etching samples with those exposed to plasma etching conditions (negligible ion bombardment) indicated that the ion bombarded surfaces exhibit a reduced level of fluorination during steady state etching. Low energy ion scattering was used to determine the composition of the outermost atomic layer. These measurements indicated a fluorine terminated surface with virtually no remaining surface oxygen.  相似文献   

18.
马文君  由芳田  彭洪尚  黄世华 《物理学报》2017,66(10):107801-107801
采用共沉淀法制备了粒径小于5 nm的六方相NaGdF_4:3%Nd~(3+)纳米颗粒.纳米颗粒表面缺陷会使发光中心产生严重的淬灭,对其表面包覆适当厚度的壳层可以有效地减少发光淬灭,提高发光性能.对NaGdF_4:3%Nd~(3+)核心纳米颗粒分别进行同质和异质包覆并且通过调节核壳比制备了不同壳层厚度的NaGdF_4:3%Nd~(3+)@NaGdF_4和NaGdF_4:3%Nd~(3+)@Na YF4纳米颗粒,研究了不同的壳层厚度对核心纳米颗粒发光的影响,并对两种不同核壳结构纳米颗粒的发光性能进行了对比.在808 nm近红外光激发下,NaGdF_4:3%Nd~(3+)纳米颗粒发射出位于约866,893,1060 nm的近红外发射.与核心纳米颗粒相比,核壳结构的纳米颗粒的荧光强度增强,荧光寿命增长,并且随着壳厚的增加,荧光强度出现先增强后减弱、荧光寿命逐步增长的趋势.与相同条件下同质包覆的NaGdF_4:3%Nd~(3+)@NaGdF_4纳米颗粒相比,异质包覆的NaGdF_4:3%Nd~(3+)@NaYF_4纳米颗粒光谱荧光强度增强,寿命增长.  相似文献   

19.
Due to the evolution of the band structure through the series, the rare earth R-3d metal compounds form outstanding tools for the study of the 3d and/or 4f magnetic instabilities. Such instabilities are illustrated in this paper for three types of systems: i) the Y-Ni system with a special emphasis on the “thermal spontaneous magnetization” observed in Y2Ni7, ii) the R-Co system where “collective electron metamagnetism” and Co antiferromagnetism are observed in the RCo2 (as in ThCo5), and in La2Co1.7 and La2Co3, respectively; iii) the Ce-Ni system where the 4f instability is quite characteristic in the CeNi intermediate valence compound in which large magnetovolume effects were determined.  相似文献   

20.
Gold nanoparticles having prechosen size ranging from 5 to 110 nm have been prepared in two steps. Firstly, small spherical particles (seed) of average diameters between 5 and 20 nm were prepared by varying the ratio of gold ion concentration to stabilizer/reductant, TX-100 concentration and using UV irradiation. Secondly, 20–110 nm particles were formed by a non-iterative seed-mediated growth where small particles produced by the above irradiation technique were exploited as seeds and fresh Au(III) ions were reduced onto the surface on the seed particles by ascorbic acid. The kinetics of particle formation has also been reported. These methods were fast and showed improved monodispersity sphericity and excellent reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号