首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the semi-classical Thomas-Fermi approximation together with the Skyrme energy-density functional, we study the deformation dependence of symmetry energy coefficients of finite nuclei. The symmetry energy coefficients of nuclei with mass number A = 40, 100, 150, 208 are extracted from two-parameter parabola fitting to the calculated energy per particle. We find that the symmetry energy coefficients decrease with the increase of nuclear quadrupole deformations, which is mainly due to the isospin dependence of the difference between the proton and neutron surface diffuseness. Large deformations of nuclei can cause the change of the symmetry energy coefficient by about 0.5 Me V and the influence of nuclear deformations on the symmetry energy coefficients is more evident for light and intermediate nuclei.  相似文献   

2.
A method is proposed for measuring energies of particles in the region above 1 TeV. The method is based on detecting the greatest specific energy deposition in hadronic cascades propagating in dense matter. This makes it possible to improve accuracy in measuring energy by thin calorimeters in studying the energy spectra of high-energy cosmic rays at high altitudes. Attainable accuracies in measuring energy are considered for protons and He nuclei. The results of a relevant simulation are compared with the results of a satellite-borne experiment with Kosmos-1713.  相似文献   

3.
The density functional determining the Coulomb energy of nuclei is calculated to the first order in e 2. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CCE is shown to come from the surface region of nuclei. The CCE effect on the calculated proton drip line is examined, and the maximum charge Z of nuclei near this line is found to decrease by 2 or 3 units. The effect of Coulomb interaction on the effective proton mass is analyzed.  相似文献   

4.
As the accuracy of measuring the energy spectra of different nuclei in the primary cosmic ray flux and their ratios grows, more evidence appears for the nonpower character of these spectra at energies below the knee at 3–4 PeV. Irregularities in the spectra are the natural consequence of the nonuniformity of the cosmic ray source distributions: their types, ages and distances to the Earth; the nonuniformity of the interstellar medium; and the different densities, temperatures, and natures of magnetic fields. In particular, the flattening of the proton and helium energy spectra, the growth of the fraction of positrons in the total flux of positrons and electrons, and the constancy of the ratio of antiprotons to protons at sub-PeV energies could be due to the contribution from nearby and young sources emitting harder energy spectra of particles. It is shown that the recent measurements of the ratio of the boron and carbon nuclei performed in the AMS-02 experiment could also indicate that there is a contribution from a single comparatively young and nearby source.  相似文献   

5.
Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in a macroscopic-microscopic model. The Lublin-Strasbourg Drop (LSD) model is used to obtain the macroscopic part of the energy, whereas the shell and pairing energy corrections are evaluated using the Yukawa-folded potential; a standard flooding technique is utilized to determine barrier heights. A Fourier shape parametrization containing only three deformation parameters is shown to effectively reproduce the nuclear shapes of nuclei approaching fission. In addition, a non-axial degree of freedom is taken into account to better describe the structure of nuclei around the ground state and in the saddle region. In addition to the symmetric fission valley, a new highly asymmetric fission mode is predicted in most superheavy nuclei. The fission fragment mass distributions of the considered nuclei are obtained by solving 3D Langevin equations.  相似文献   

6.
高能脉冲X射线能谱测量   总被引:2,自引:0,他引:2       下载免费PDF全文
给出了高能脉冲X射线能谱测量的基本原理及实验结果.采用Monte-Carlo程序计算了高能光子在能谱仪中每个灵敏单元内的能量沉积,利用能谱仪测量了"强光Ⅰ号"加速器产生的高能脉冲X射线不同衰减程度下的强度,求解得到了具有时间分辨的高能脉冲X射线能谱,时间跨度57ns,时间步长5ns,光子的最高能量3.0MeV,平均能量1.04MeV,能量在0.2—0.9MeV之间的光子数目最多,占46.5%.也利用二极管的电压电流波形理论计算了光子的能谱,并与利用能谱仪测得的能谱进行了比较,两种方法所得结果基本一致.  相似文献   

7.
Samples of polyallyldiglycolcarbonate (PADC) track etch detectors (TED) were exposed to high energy 12C nuclei at the particle beam of the Dubna synchrophasotron. The energy of 12C nuclei varied between 0.1 and 1.5 GeV per amu.

At the low studied energies the linear energy transfer (LET) of these nuclei is higher than the detector threshold value. Then, the primary particle tracks are directly etched in the detector surface. The detection efficiency approaches to 100% at perpendicular incidence. Their LET has been established by means of standard authomatized procedure recently developed. The LET values found here are in good agreement with theoretical ones.

At 1.5 GeV per amu (LET 8.4 KeV μm−1) the secondary particle tracks were evaluated in all the exposed detectors. The energy deposited by these particles was compared to the energy deposited through primary ionization losses. It was found out that its contribution to the total dose is relatively lower than for protons of comparable energies. In some of these samples even the tracks of the primary nuclei were observed. It follows that the detection threshold of the developed LET spectrometer should be below 10 keV μm−1.  相似文献   


8.
The results are presented that were obtained by measuring and analyzing the yields and kinematical features of radioactive products of the reactions initiated in a lead target by lithium ions accelerated to an energy of 35M eV per nucleon. The cross sections, charge and mass distributions, and kinematical and energy features of various reaction products associated with the fission and the evaporation channels of the decay of excited nuclei are determined. Quantities that are calculated in the present study include the momenta and kinetic energies of residual nuclei, as well as the momentum transfer and the excitation energy of intermediate nuclear systems formed upon complete and incomplete fusion. On the basis of an analysis of data obtained in our experiment, the total cross section for nuclear interaction and partial widths with respect to various channels of the decay of intermediate compound nuclei are determined in the energy range being investigated.  相似文献   

9.
《Nuclear Physics A》1995,588(1):c99-c103
One dimensional three-body model which simulates the low energy reactions of the nuclei with halo structure, is investigated by solving exactly the three-body Schrödinger equation. The dynamical roles of the halo neutron during the reaction are studied in detail. The decrease of the fusion probability, as well as the large transfer and break-up probabilities, are found for halo nuclei.  相似文献   

10.
This paper reports on the results of measurements performed in the course of the ATIC-2 balloon experiment (2002–2003) for the energy spectra of particles (such as protons; He, C, O, Ne, Mg, Si, and Fe nuclei; and some groups of nuclei) and the all-particle energy spectrum in primary cosmic rays at energies ranging from 50 GeV to 200 TeV. The conclusion is drawn that the energy spectra of protons and helium nuclei differ substantially (the spectrum of protons is steeper) and that the shape of the energy spectra of protons and heavy nuclei cannot be described by a power function.  相似文献   

11.
A semi-empirical interaction is used to calculate higher order corrections to the binding energies of even—even nuclei close to the line of stability. These corrections are taken to come from two phonon configurations and are treated as a perturbation with respect to the BCS nuclear ground state which is obtained from applying the energy density method to finite nuclei. The overall correspondence between theory and experiment for the 60 nuclei calculated between A =52 and A =234 is good, with excellent agreement for the non-deformed nuclei situated within the regions A = 72 to 144 and A = 200 to 212. The large correction enegies (several MeV per nucleus on the average) indicate that these correlations are of importance for explaining nuclear binding energies and that it is necessary to include them within energy functional itself. The fact that these correlations come almost exclusively from nucleons close to the fermi surface is also discussed.  相似文献   

12.
We examine the current status of the extraction of the rate of partonic energy loss in nuclei from A-dependent data. The advantages and difficulties of using the Drell-Yan process to measure the energy loss of a parton traversing a cold nuclear medium are discussed. The prospects of using relatively low energy proton beams for a definitive measurement of partonic energy loss are presented.  相似文献   

13.
14.
The total binding energy of nuclei is determined by means of many-body field theory. The problem is then reduced to finding the energy-dependent average potential (mass operator) and solving the single-particle equations of motion. Such a potential can be established phenomenologically by using data on low excitations and reactions knocking out nucleons from deep “hole” levels. Calculations of the total binding energy of the nuclei 16O, 40Ca and 58Ni with this potential are in satisfactory agreement with experiment.  相似文献   

15.
The energy dependences of the cross sections for the fission of 232Th to 239Pu nuclei that is induced by protons of energy in excess of 50 MeV are proposed to be approximated by the sum of two functions. Of these, the first decreases exponentially with increasing proton energy. It represents the contribution of two-step fission, which competes with particle evaporation. The second function decreases exponentially as the energy grows to about 200 MeV, whereupon it increases up to an energy of 1 or 2.5 GeV. After that, it again decreases for 232Th to 233U nuclei or remains nearly unchanged for 237Np and 239Pu nuclei. This function is likely to represent the sum of the contributions from three modes of single-stage fission.  相似文献   

16.
B K AGRAWAL 《Pramana》2014,83(5):695-704
The nuclear symmetry energy at a given density measures the energy transferred in converting symmetric nuclear matter into the pure neutron matter. The density content of nuclear symmetry energy remains poorly constrained. Our recent results for the density content of the nuclear symmetry energy, around the saturation density, extracted using experimental data for accurately known nuclear masses, giant resonances and neutron-skin thickness in heavy nuclei are summarized.  相似文献   

17.
The method that we previously developed for going over from double volume integrals to double surface integrals in calculating the Coulomb energy of nuclei that have a sharp surface is generalized to the case of nuclei where the range of nuclear forces is finite and where the nuclear surface is diffuse. New formulas for calculating the Coulomb and the nuclear energy of deformed nuclei are obtained within this approach. For a spherically symmetric nucleus, in which case there is an analytic solution to the problem in question, the results are compared with those that are quoted in the literature, and it is shown that the respective results coincide identically. A differential formulation of the method developed previously by Krappe, Nix, and Sierk for going over from double volume integrals to double surface integrals is proposed here on the basis of the present approach.  相似文献   

18.
Swift heavy ions interact with electrons in materials and this may yield permanent atomic displacements; the energy transfer mechanisms that bring electronic excitations into atomic motion are not fully understood, and are generally discussed in terms of two theories, viz. Coulomb explosion and heat exchange between excited electrons and atoms, which is limited by electron-phonon coupling. We address this problem for a “generic” material using a semi-classical numerical approach where the dynamics of the evolving electron density is calculated by using molecular dynamics simulations applied to pseudo-electrons. The forces exerted on the nuclei are then used to calculated the trajectories of the nuclei. From the temporal evolution of the atomic kinetic energy, we find that the energy transfer between the electrons and the nuclei can be divided in two parts. First, a Coulomb heating starts the motion of the atoms by giving them a radial speed; this process differs from Coulomb explosion because the atoms are not displaced over interatomic distances. Second, a thermal energy transfer, as described in linear transport theory, takes place. Our study thus confirms the domination of thermal energy exchange mechanisms over Coulomb explosion models.  相似文献   

19.
Signatures of γ softness or rigid triaxiality in low energy, low spin nuclear spectra are discussed. Two classes of signatures, relating to γ-band energy staggering, are found to provide clear distinctions between these shapes. The data for even-even nuclei are compared to predictions for potentials with varying γ dependence. It is found that nuclei with large asymmetries can be characterized by potentials that are nearly γ flat, with, at most, a few percent deviation from γ independence.  相似文献   

20.
A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaonnucleon interaction. It is found that the 1 S_(1/2) state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号