首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steroid glucuronide conjugates of 16,16,17-d(3)-testosterone, epitestosterone, nandrolone (19-nortestosterone), 16,16,17-d(3)-nortestosterone, methyltestosterone, metenolone, mesterolone, 5alpha-androstane-3alpha,17beta-diol, 2,2,3,4,4-d(5)-5alpha-androstane-3alpha,17beta-diol, 19-nor-5alpha-androstane-3alpha,17beta-diol, 2,2,4,4-d(4)-19-nor-5alpha-androstane-3alpha,17beta-diol and 1alpha-methyl-5alpha-androstane-3alpha/beta,17beta-diol were synthesized by means of the Koenigs-Knorr reaction. Selective 3- or 17-O-conjugation of bis-hydroxylated steroids was performed either by glucuronidation of the corresponding steroid ketole and subsequent reduction of the keto group or via a four-step synthesis starting from a mono-hydroxylated steroid including (a) protection of the hydroxy group, (b) reduction of the keto group, (c) conjugation reaction and (d) removal of protecting groups. The mass spectra and fragmentation patterns of all glucuronide conjugates were compared with those of the commercially available testosterone glucuronide and their characterization was performed by gas chromatography/mass spectrometry and nuclear magnetic resonance spectroscopy. For mass spectrometry the substances were derivatized to methyl esters followed by trimethylsilylation of hydroxy groups and to pertrimethylsilylated products using labelled and unlabelled trimethylsilylating agents. The resulting electron ionization mass spectra obtained by GC/MS quadrupole and ion trap instruments, full scan and selected reaction monitoring experiments are discussed, common and individual fragment ions are described and their origins are proposed.  相似文献   

2.
Mass spectrometric and tandem mass spectrometric behavior of eight anabolic steroid glucuronides were examined using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in negative and positive ion mode. The objective was to elucidate the most suitable ionization method to produce intense structure specific product ions and to examine the possibilities of distinguishing between isomeric steroid glucuronides. The analytes were glucuronide conjugates of testosterone (TG), epitestosterone (ETG), nandrolone (NG), androsterone (AG), 5alpha-estran-3alpha-ol-17-one (5alpha-NG), 5beta-estran-3alpha-ol-17-one (5beta-NG), 17alpha-methyl-5alpha-androstane-3alpha,17beta-diol (5alpha-MTG), and 17alpha-methyl-5beta-androstane-3alpha,17beta-diol (5beta-MTG), the last four being new compounds synthesized with enzyme-assisted method in our laboratory. High proton affinity of the 4-ene-3-one system in the steroid structure favored the formation of protonated molecule [M + H]+ in positive ion mode mass spectrometry (MS), whereas the steroid glucuronides with lower proton affinities were detected mainly as ammonium adducts [M + NH4]+. The only ion produced in negative ion mode mass spectrometry was a very intense and stable deprotonated molecule [M - H]- . Positive ion ESI and APCI MS/MS spectra showed abundant and structure specific product ions [M + H - Glu]+, [M + H - Glu - H2O]+, and [M + H - Glu - 2H2O]+ of protonated molecules and corresponding ions of the ammonium adduct ions. The ratio of the relative abundances of these ions and the stability of the precursor ion provided distinction of 5alpha-NG and 5beta-NG isomers and TG and ETG isomers. Corresponding diagnostic ions were only minor peaks in negative ion MS/MS spectra. It was shown that positive ion ESI MS/MS is the most promising method for further development of LC-MS methods for anabolic steroid glucuronides.  相似文献   

3.
The application of a comprehensive gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS)-based method for stable carbon isotopes of endogenous urinary steroids is presented. The key element in sample preparation is the consecutive cleanup with high-performance liquid chromatography (HPLC) of underivatized and acetylated steroids, which allows the isolation of ten analytes (11beta-hydroxyandrosterone, 5alpha-androst-16-en-3beta-ol, pregnanediol, androsterone, etiocholanolone, testosterone, epitestosterone, 5alpha-androstane-3alpha,17beta-diol, 5beta-androstane-3alpha,17beta-diol and dehydroepiandrosterone) from a single urine specimen. These steroids are of particular importance to doping controls as they enable the sensitive and retrospective detection of steroid abuse by athletes.Depending on the biological background, the determination limit for all steroids ranges from 5 to 10 ng/mL for a 10 mL specimen. The method is validated by means of linear mixing models for each steroid, which covers repeatability and reproducibility. Specificity was further demonstrated by gas chromatography/mass spectrometry (GC/MS) for each analyte, and no influence of the sample preparation or the quantity of analyte on carbon isotope ratios was observed. In order to determine naturally occurring (13)C/(12)C ratios of all implemented steroids, a reference population of n = 61 subjects was measured to enable the calculation of reference limits for all relevant steroidal Delta values.  相似文献   

4.
A sensitive liquid chromatography-electrospray ionization-tandem mass spectrometric (LC-ESI-MS/MS) method for the determination of the rat brain 5alpha-androstane-3alpha,17beta-diol (3alpha,5alpha-Adiol) has been developed and validated. The brain extract was purified using solid-phase extraction cartridges, derivatized with isonicotinoyl azide, and subjected to LC-MS/MS. The method was accurate and reproducible, and the limit of quantitation was 0.1 ng/g tissue when a 100-mg tissue sample was used. The change in the brain 3alpha,5alpha-Adiol level by immobilization stress was also analyzed using the developed method.  相似文献   

5.
In recent years products containing 6alpha-methylandrost-4-ene-3,17-dione have appeared on the sport supplement market. Scientific studies have proven aromatase inhibition and anabolic and mild androgenic properties; however, no preparation has been approved for medical use up to now. In sports 6alpha-methylandrost-4-ene-3,17-dione has to be classified as a prohibited substance according to the regulations of the World Anti-Doping Agency (WADA). For the detection of its misuse the metabolism was studied following the administration of two preparations obtained from the Internet (Formadrol and Methyl-1-Pro). Several metabolites as well as the parent compounds were synthesized and the structures of 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, 6alpha-methylandrost-4-ene-3,17-dione, and 5beta-dihydromedroxyprogesterone were confirmed by nuclear magnetic resonance (NMR) spectroscopy. The main metabolite, 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, was found to be excreted as glucuronide and was still detectable in microg/mL amounts until urine collection was terminated (after 25 h). Additionally, samples from routine human sports doping control had already tested positive for the presence of metabolites of 6alpha-methylandrost-4-ene-3,17-dione. Screening analysis can be easily performed by the existing screening procedure for anabolic steroids using 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one as target substance (limit of detection <10 ng/mL). Its discrimination from the closely eluting drostanolone metabolite, 3alpha-hydroxy-2alpha-methyl-5alpha-androstan-17-one, is possible as the mono-TMS derivative.  相似文献   

6.
Factors influencing the steroid profile in doping control analysis   总被引:1,自引:0,他引:1  
Steroid profiling is one of the most versatile and informative screening tools for the detection of steroid abuse in sports drug testing. Concentrations and ratios of various endogenously produced steroidal hormones, their precursors and metabolites including testosterone (T), epitestosterone (E), dihydrotestosterone (DHT), androsterone (And), etiocholanolone (Etio), dehydroepiandrosterone (DHEA), 5alpha-androstane-3alpha,17beta-diol (Adiol), and 5beta-androstane-3alpha,17beta-diol (Bdiol) as well as androstenedione, 6alpha-OH-androstenedione, 5beta-androstane-3alpha,17alpha-diol (17-epi-Bdiol), 5alpha-androstane-3alpha,17alpha-diol (17-epi-Adiol), 3alpha,5-cyclo-5alpha-androstan-6beta-ol-17-one (3alpha,5-cyclo), 5alpha-androstanedione (Adion), and 5beta-androstanedione (Bdion) add up to a steroid profile that is highly sensitive to applications of endogenous as well as synthetic anabolic steroids, masking agents, and bacterial activity. Hence, the knowledge of factors that do influence the steroid profile pattern is a central aspect, and pharmaceutical (application of endogenous steroids and various pharmaceutical preparations), technical (hydrolysis, derivatization, matrix), and biological (bacterial activities, enzyme side activities) issues are reviewed.  相似文献   

7.
Dehydroepiandrosterone (DHEA) reacted with m-chloroperoxybenzoic acid(m-CPBA) to form 3beta-hydroxy-5alpha,6alpha-epoxyandrostan-17-one (1), but it did not react with 30% H2O2. 1,4,6-Androstatrien-3,17-dione (2) was obtained from DHEA and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone in dioxane. Compound 2 was reacted with 30%H2O2 and 5% NaOH in methanol to give 1alpha,2alpha-epoxy-4,6-androstadien-3,17-dione (3),which was stereoselectively reduced with NaBH4 to form 1alpha,2alpha-epoxy-4,6-androstadien-3beta,17beta-diol (7) and reacted with Li metal in absolute ethanol-tetrahydrofuran mixture to give 2-ethoxy-1,4,6-androstatrien-3,17-dione (8). Compound 2 was also epoxidized with m-CPBA in dichloromethane to afford 6alpha,7alpha-epoxy-1,4-androstadien-3,17-dione (4),which was reacted with NaBH4 to synthesize 6alpha,7alpha-epoxy-4-androsten-3beta,17beta-diol (9).Compound 4 was reduced with Li metal in absolute ethanol-tetrahydrofuran mixture to form 7beta-ethoxy-6alpha-hydroxy-1,4-androstadien-3,17-dione (10). Compound 2 was reduced with NaBH4 in absolute ethanol to form 4,6-androstadien-3beta,17beta-diol (5), which was reacted with 30% H2O2 to give the original compound, but which reacted with m-CPBAto give 4beta,5beta-epoxy-6-androsten-3beta,17beta-diol (6).  相似文献   

8.
A method to quantify metabolites of 17beta-nandrolone (17betaN) in boar and horse urine has been optimized and validated. Metabolites excreted in free form were extracted at pH 9.5 with tert-butylmethylether. The aqueous phases were applied to Sep Pak C18 cartridges and conjugated steroids were eluted with methanol. After evaporation to dryness, either enzymatic hydrolysis with beta-glucuronidase from Escherichia coli or solvolysis with a mixture of ethylacetate:methanol:concentrated sulphuric acid were applied to the extract. Deconjugated steroids were then extracted at alkaline pH with tert-butylmethylether. The dried organic extracts were derivatized with MSTFA:NH4I:2-mercaptoethanol to obtain the TMS derivatives, and were subjected to analysis by gas chromatography mass spectrometry (GC/MS). The procedure was validated in boar and horse urine for the following metabolites: norandrosterone, noretiocholanolone, norepiandrosterone, 5beta-estran-3alpha, 17beta-diol, 5alpha-estran-3beta, 17beta-diol, 5alpha-estran-3beta, 17alpha-diol, 17alpha-nandrolone, 17betaN, 5(10)-estrene-3alpha, 17alpha-diol, 17alpha-estradiol and 17beta-estradiol in the different metabolic fractions. Extraction recoveries were higher than 90% for all analytes in the free fraction, and better than 80% in the glucuronide and sulphate fractions, except for 17alpha-estradiol in the glucuronide fraction (74%), and 5alpha-estran-3beta, 17alpha-diol and 17betaN in the sulphate fraction (close to 70%). Limits of quantitation ranged from 0.05 to 2.1 ng mL(-1) in the free fraction, from 0.3 to 1.7 ng mL(-1) in the glucuronide fraction, and from 0.2 to 2.6 ng mL(-1) in the sulphate fraction. Intra- and inter-assay values for precision, measured as relative standard deviation, and accuracy, measured as relative standard error, were below 15% for most of the analytes and below 25%, for the rest of analytes. The method was applied to the analysis of urine samples collected after administration of 17betaN laureate to boars and horses, and its suitability for the quantitation of the metabolites in the three fractions has been demonstrated.  相似文献   

9.
In September 2005, our laboratory detected the presence of 4-androstene-3,17-dione and androsterone in a standard steroid screen of a post-race gelding urine sample received from an overseas authority. All other urine samples from the same batch tested negative. Subsequent gas chromatography/mass spectrometry (GC/MS) confirmatory analyses, however, repeatedly failed to detect any amount of 4-androstene-3,17-dione and androsterone in the suspicious sample. On the other hand, identical results were obtained when the initial GC/MS screening method was repeated on the suspicious sample as well as on the other samples of the same batch, showing the presence of 4-androstene-3,17-dione and androsterone only in the suspicious sample. These unusual and contradictory findings between the screening and confirmatory procedures were investigated, leading to the unequivocal conclusion that the 4-androstene-3,17-dione and androsterone observed during screening were artefacts from the internal standards, [16,16,17-d3]-testosterone and [16,16,17-d3]-5alpha-androstane-3alpha,17beta-diol. The two deuterated internal standards were thought to have undergone first an enzymatic oxidation of the 17beta-hydroxyl group to a 17-keto function by the enzyme 17beta-hydroxysteroid dehydrogenase; complete deuterium-hydrogen exchange at C16 during the methanolysis deconjugation step would then produce the two artefacts. The findings from this study highlight the potential problem of using internal standards in qualitative confirmatory analyses, which may lead to undesirable false positive results.  相似文献   

10.
A determination method for steroid 5alpha-reductase activity using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS) in the positive-ion mode has been developed. The rat prostatic enzyme source was used and the enzymatically formed 5alpha-dihydrotestosterone and 5a-androstane-3alpha,17beta-diol were determined by LC/APCI-MS using absolute calibration curve method. The sum of the formed products was used as a measurement of the enzyme activity. This method was applied to kinetic study of this enzyme and inhibitory experiments using Finasteride as a model inhibitor.  相似文献   

11.
17beta-Nortestosterone (17betaN) is illegally used in livestock as a growth promoter and its endogenous production has been described in some animals, such as adult boars. In this paper, the metabolism of 17betaN in boars has been studied by gas chromatography/mass spectrometry (GC/MS) in order to identify markers of the exogenous administration. Administration studies of intramuscular 17betaN laurate to male pigs were performed. Free, sulphate and glucuronide fractions of the urine samples were separated and the steroids present were quantified by GC/MS. 17betaN was detected in some pre-administration samples. After administration, 17betaN, norandrosterone, noretiocholanolone (NorE), norepiandrosterone, 5beta-estrane-3alpha,17beta-diol and 5alpha-estrane-3beta,17beta-diol were detected in different fractions, being the most important metabolites, 17betaN excreted as a sulphate and free NorE. Samples collected in routine controls were also analyzed by GC/MS to identify endogenous compounds. 17betaN, norandrostenedione and estrone were detected in almost all the samples. No other 17betaN metabolites were detected. According to these results, the detection by GC/MS of some of the 17betaN metabolites described above, different from 17betaN, could be indicative of the exogenous administration of 17betaN to boars.  相似文献   

12.
The structure of a new crystalline base (melting point (mp) 167-169 degrees C) obtained from Fritillaria imperialis was elucidated as (20R, 25R)-5alpha,17beta-cevanine-3beta,6beta-diol, X-ray diffraction analysis of the mono-hydrate. The base was found to be identical with persicanidine B and also with harepermine.  相似文献   

13.
The metabolic fate of 19-nortestosterone laurate in cattle was investigated to evaluate target analyte(s) appropriate to surveillance for illicit use as a growth promoting agent. Bovine hepatocytes were incubated with either [3H]19-nortestosterone laurate (19-NTL; 4-estren-17 beta-laurate-3-one) or [3H]19-nortestosterone (19-NT; 4-estren-17 beta-ol-3-one; nandrolone). Hepatocyte medium was extracted with solid phase C18 media and analysed by narrow bore radio-HPLC-MSn (LCQ, Finnigan) to evaluate the structure of metabolites of 19-NTL and 19-NT. Radio-HPLC of hepatocyte medium extracts following incubation with [3H]19-NTL confirmed that the first step of biotransformation in liver was hydrolysis of the fatty acid ester to release [3H]19-NT, which, in turn, was converted into a range of metabolites of diverse polarity. Hydrolysis of hepatocyte medium extracts with beta-glucuronidase (Helix pomatia) indicated that some of these metabolites were glucuronide or sulfate conjugates. Structural analysis of unconjugated metabolities by positive-ion atmospheric pressure chemical ionisation MS2 and comparison with available reference preparations indicated biotransformation of 19-NT to 4-estren-17 alpha-ol-3-one, 4-estren-3, 17-dione (major metabolite after 1 h), n-hydroxy-4-estren-3, 17-dione, n-hydroxy-4-estren-17-ol-3-one, 5 beta-estran-3 alpha-ol-17-one (noretiocholanolone) and 5 beta-estran-3 alpha, 17 beta-ol (major metabolite after 4 h). Conjugated metabolites were analysed by electrospray ionization, which revealed the presence of glucuronide conjugates of alpha-(trace) and beta-epimers of 19-NT, n-hydroxy-4-estren-3, 17-dione, n-hydroxy-4-estren-17-ol-3-one and 5 beta-estran-3 alpha, 17 beta-diol. These studies provide a clear indication of the route of hepatic metabolism in the bovine, which may now be readily substantiated by reference to samples, such as urine or bile, derived from animals treated with unlabelled 19-NTL.  相似文献   

14.
采用均匀沉淀法合成ZnO纳米颗粒( ZnO NPs),以ZnO NPs为种子,制备水溶性Au/ZnO异质结构。将Au/ZnO异质结构附着于离子液体功能化石墨烯( GN)复合膜上,形成一种新颖的负载型石墨烯复合材料(Au/ZnO/GN)。所构建的青霉素酶-氧化苏木精修饰Au/ZnO/GN(PH-AZG)传感器在PBS水溶液(pH=7.0)中对青霉素钠检测线性范围为2.5×10-14~3.3×10-6 mol/L,检出限达到1.5×10-14 mol/L (S/N≥3)。在相同条件下制备5根PH-AZG电极,其响应电流的相对标准偏差(RSD)小于3.2%。同时,在实际牛奶制品中,本方法的检测线性范围为5×10-14~5×10-7 mol/L,加标回收率为99.7%~101.4%,RSD 为2.3%~3.5%(n=5)。结果表明,本方法对实际牛奶制品中低浓度青霉素钠的检测具有可行性。  相似文献   

15.
[2 beta,7,7,16 beta-2H4]16 alpha,19-Dihydroxyandrost-4-ene-3,17-dione (14) and [7,7,16 beta-2H3]3 beta,16 alpha,19-trihydroxyandrost-5-en-17-one (16), with high isotopic purity, respectively, were synthesized from unlabeled 3 beta-(tert-butyldimethylsiloxy)-androst-5-ene-17 beta-yl acetate (1). The deuterium introduction at C-7 was carried out by reductive deoxygenation of the 7-keto compound 3 with dichloroaluminum deuteride and that at C-2 beta and/or C-16 beta by controlled alkaline hydrolysis of 16-bromo-17-ketone 11 or 12 with NaOD in D2O and pyridine. [7,7-2H2]3 beta-Hydroxyandrost-5-en-17-one (6), obtained from compound 1 by a five-step sequence, was converted to compound 14 or 16 by an eight-step or seven-step sequence, respectively. The labeled steroids 14 and 16 are useful as internal standards for gas chromatography-mass spectrometry analysis of the endogenous levels.  相似文献   

16.
Separation and determination of adamantane derivatives with antiviral activity, namely amantadine (1-adamantan amine), memantine (1-amino-3,5-dimethyl adamantane) and rimantadine (alpha-methyl-1-adamantane methylamine), were examined by capillary zone electrophoresis. After optimization, an indirect detection method using 5 mM 4-methylbenzylamine in ethanol/water solution (1:4) as simultaneously absorbing and buffering background electrolyte with detection at 210 nm was found suitable for determination of the individual compounds (limit of detection was 0.35 mg L(-1) for memantine hydrochloride, S/N = 3). Baseline separation of all the three compounds was reached by addition of alpha- or beta-cyclodextrins to the electrolyte in concentrations of 20 and 2 mM, respectively.  相似文献   

17.
A novel trinorguaiane-type sesquiterpene named radicol (1), together with a known sesquiterpene dictamnol (2), was isolated from the petroleum ether-EtOAc-MeOH extracts of the root of Dictamnus radicis Cortex. The structure of 1 was elucidated as 1 alpha,5 alpha-dimethyl-4 alpha,10 alpha-bicyclo[3.5.0]dec-8-en-1 beta,5 beta-diol (1) on the basis of IR, HRESIMS, 1H and 13C NMR, DEPT, 1H-1H COSY, HMQC, HMBC and NOESY.  相似文献   

18.
玻璃微流控通道中水凝胶固定寡核苷酸探针的方法及应用   总被引:1,自引:0,他引:1  
核酸杂交是分子生物学研究中最常用和最基本的分析方法之一.杂交技术有多种,主要区别在于探针的固定.目前常用的是将探针直接固定在载体表面(尼龙膜或硅烷化的玻片)或用磁珠法和水凝胶法固定,其中水凝胶法兼有三维立体和简单实用的优势,其发展颇为引人注意.微流控芯片技术具有集成化和自动化的优势.将水凝胶和微流控技术相结合,将使核酸分析中的杂交、变性以及重新杂交等操作更为简单、快速、易行.  相似文献   

19.
The metabolism and excretion of androst-4-ene-3,6,17-trione after administration of the 'nutritional' supplement 6-OXO was investigated by gas chromatography-mass spectrometry (GC-MS) in full-scan mode. The parent drug androst-4-ene-3,6,17-trione and androst-4-ene-6alpha,17beta-diol-3-one and androst-4-ene-6alpha-ol-3,17-dione were detected in the post-administration urine samples. Because androst-4-ene-3,6,17-trione is an anabolic steroid and an aromatase inhibitor, this substance is regarded as a doping agent. Hence, a selective and sensitive GC-MS method in selected ion monitoring mode for the detection of the TMS-enol-TMS-ether derivatives of these substances was developed and validated for doping control purposes. The limit of detection (LOD) of the investigated compounds ranged from 5 to 10 ng/mL. Using this method, the detection time for androst-4-ene-3,6,17-trione and androst-4-ene-6alpha,17beta-diol-3-one was 24 h, while androst-4-ene-6alpha-ol-3,17-dione could be detected up to 37 h after administration of the dose recommended by the manufacturer.  相似文献   

20.
Bromobutide, a novel herbicide, was labeled with carbon-14 independently at the carbonyl group and the phenyl ring for use in metabolic studies. 14C-Carbonation of neopentylmagnesium chloride (3) gave 3,3-dimethyl[1-14C]butyric acid (4a) quantitatively. Chlorination of 4a with thionyl chloride followed by alpha-bromination with bromine yielded 2-bromo-3,3-dimethyl[1-14C]-butyryl halide (5a), which was subsequently condensed with alpha, alpha-dimethylbenzylamine (6a) to afford [carbonyl-14C]bromobutide (1a). The overall yield of 1a was 76% from barium [14C]-carbonate (2). Similarly, condensation of alpha, alpha-dimethyl[phenyl-14C]benzylamine (6b), which was prepared from alpha-methyl[phenyl-U-14C]styrene (7) in three steps, with 2-bromo-3,3-dimethylbutyryl halide (5b) gave [phenyl-14C]bromobutide (1b) in 67% yield after purification. The specific activities of 1a and 1b were 1.38 and 0.781 GBq/mmol (37.2 and 21.1 mCi/mmol), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号