首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The Peregrine breather of order eleven(P_(11) breather) solution to the focusing one-dimensional nonlinear Schrdinger equation(NLS) is explicitly constructed here. Deformations of the Peregrine breather of order 11 with 20 real parameters solutions to the NLS equation are also given: when all parameters are equal to 0 we recover the famous P_(11) breather. We obtain new families of quasi-rational solutions to the NLS equation in terms of explicit quotients of polynomials of degree 132 in x and t by a product of an exponential depending on t. We study these solutions by giving patterns of their modulus in the(x; t) plane, in function of the different parameters.  相似文献   

2.
Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact breather solutions are given analytically by adjusting the parameters. Moreover, the interesting fundamental problem is to clarify the formation mechanism of asymmetry breather solutions and how the particle number and energy exchange between the background and soliton ultimately form the breather solutions. Our results also show that the formation mechanism from breather to rogue wave arises from the transformation from the periodic total exchange into the temporal local property.  相似文献   

3.
Li Sun  Jiaxin Qi  Hongli An 《理论物理通讯》2020,72(12):125009-115
Based on a special transformation that we introduce, the N-soliton solution of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation is constructed. By applying the long wave limit and restricting certain conjugation conditions to the related solitons, some novel localized wave solutions are obtained, which contain higher-order breathers and lumps as well as their interactions. In particular, by choosing appropriate parameters involved in the N-solitons, two interaction solutions mixed by a bell-shaped soliton and one breather or by a bell-shaped soliton and one lump are constructed from the 3-soliton solution. Five solutions including two breathers, two lumps, and interaction solutions between one breather and two bell-shaped solitons, one breather and one lump, or one lump and two bell-shaped solitons are constructed from the 4-soliton solution. Five interaction solutions mixed by one breather/lump and three bell-shaped solitons, two breathers/lumps and a bell-shaped soliton, as well as mixing with one lump, one breather and a bell-shaped soliton are constructed from the 5-soliton solution. To study the behaviors that the obtained interaction solutions may have, we present some illustrative numerical simulations, which demonstrate that the choice of the parameters has a great impacts on the types of the solutions and their propagation properties. The method proposed can be effectively used to construct localized interaction solutions of many nonlinear evolution equations. The results obtained may help related experts to understand and study the interaction phenomena of nonlinear localized waves during propagations.  相似文献   

4.
The derivative nonlinear Schrödinger (DNLS) equation, which governs the propagation of the femtosecond optical pulse in a monomodal optical fiber, is analytically studied in this Letter. Breather and double-pole solutions are derived from the two-soliton solution with the choice of parameters. It is found that the parameters in the DNLS equation cannot only control the phase and propagation direction of the breather and double pole, but also influence the interaction period of the breather. Elastic collisions between a breather and a dark/anti-dark soliton are studied by the qualitative analysis and graphical illustration. The stability of the breather and double-pole solutions is also analyzed.  相似文献   

5.
6.
We find that the sextic nonlinear Schrödinger (NLS) equation admits breather‐to‐soliton transitions. With the Darboux transformation, analytic breather solutions with imaginary eigenvalues up to the second order are explicitly presented. The condition for breather‐to‐soliton transitions is explicitly presented and several examples of transitions are shown. Interestingly, we show that the sextic NLS equation admits not only the breather‐to‐bright‐soliton transitions but also the breather‐to‐dark‐soliton transitions. We also show the interactions between two solitons on the constant backgrounds, as well as between breather and soliton.  相似文献   

7.
In this paper, we propose a new method, the variable separation technique, for obtaining a breather and rogue wave solution to the nonlinear evolution equation. Integrable systems of the derivative nonlinear Schrödinger type are used as three examples to illustrate the effectiveness of the presented method. We then obtain a family of rational solutions. This family of solutions includes the Akhmediev breather, the Kuznetsov-Ma breather, versatile rogue waves, and various interactions of localized waves. Moreover, the main characteristics of these solutions are discussed and some graphics are presented. More importantly, our results show that more abundant and novel localized waves may exist in the multicomponent coupled equations than in the uncoupled ones.  相似文献   

8.
The (2+1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equation is an important integrable model. In this paper, we obtain the breather molecule, the breather-soliton molecule and some localized interaction solutions to the BLMP equation. In particular, by employing a compound method consisting of the velocity resonance, partial module resonance and degeneration of the breather techniques, we derive some interesting hybrid solutions mixed by a breather-soliton molecule/breather molecule and a lump, as well as a bell-shaped soliton and lump. Due to the lack of the long wave limit, it is the first time using the compound degeneration method to construct the hybrid solutions involving a lump. The dynamical behaviors and mathematical features of the solutions are analyzed theoretically and graphically. The method introduced can be effectively used to study the wave solutions of other nonlinear partial differential equations.  相似文献   

9.
This paper reviews results about the existence of spatially localized waves in nonlinear chains of coupled oscillators, and provides new results for the Fermi-Pasta-Ulam (FPU) lattice. Localized solutions include solitary waves of permanent form and traveling breathers which appear time periodic in a system of reference moving at constant velocity. For FPU lattices we analyze the case when the breather period and the inverse velocity are commensurate. We employ a center manifold reduction method introduced by Iooss and Kirchgassner in the case of traveling waves, which reduces the problem locally to a finite dimensional reversible differential equation. The principal part of the reduced system is integrable and admits solutions homoclinic to quasi-periodic orbits if a hardening condition on the interaction potential is satisfied. These orbits correspond to approximate travelling breather solutions superposed on a quasi-periodic oscillatory tail. The problem of their persistence for the full system is still open in the general case. We solve this problem for an even potential if the breather period equals twice the inverse velocity, and prove in that case the existence of exact traveling breather solutions superposed on an exponentially small periodic tail.  相似文献   

10.
We find approximations to travelling breather solutions of the one-dimensional Fermi-Pasta-Ulam (FPU) lattice. Both bright breather and dark breather solutions are found. We find that the existence of localised (bright) solutions depends upon the coefficients of cubic and quartic terms of the potential energy, generalising an earlier inequality derived by James [G. James, Existence of breathers on FPU lattices, C. R. Acad. Sci. Paris 332 (2001) 581-586]. We use the method of multiple scales to reduce the equations of motion for the lattice to a nonlinear Schrödinger equation at leading order and hence construct an asymptotic form for the breather. We show that in the absence of a cubic potential energy term, the lattice supports combined breathing-kink waveforms. The amplitude of breathing-kinks can be arbitrarily small, as opposed to the case for traditional monotone kinks, which have a nonzero minimum amplitude in such systems. We also present numerical simulations of the lattice, verifying the shape and velocity of the travelling waveforms, and confirming the long-lived nature of all such modes.  相似文献   

11.
Exact breather solutions are constructed in piecewise linear (PWL) versions of the discrete nonlinear Schrodinger and Klein-Gordon equations. These solutions correspond to intersections of stable and unstable manifolds of relevant fixed points in associated 2D mappings, an exact construction of which is possible due to the PWL nature of the models. Such exact solutions give us insight into several aspects of breather properties. The problem of dynamical stability of the breathers is mentioned as an instance, detailed results on which will be presented in a future paper.  相似文献   

12.
Doubly-localised breather solutions of the nonlinear Schrödinger equation (NLS) are considered to be appropriate models to describe rogue waves in water waves as well as in other nonlinear dispersive media such as fibre optics. Within the hierarchy of this type of formations, the Peregrine breather (PB) is the lowest-order rational solution. Higher-order solutions of this kind may be understood as a nonlinear superposition of fundamental Peregrine solutions. These superpositions are nontrivial and admit only a fixed well prescribed number of elementary breathers in each higher-order solution. Here, we report first observation of second-order solution which in reality is a triplet of rogue waves.  相似文献   

13.
A new type of homoclinic and heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanical feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlinear evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.  相似文献   

14.
A new type of homoclinic and heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanical feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlinear evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.  相似文献   

15.
Under investigation in this paper is a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation which describes certain atmospheric blocking phenomenon. Lax pair and infinitely many conservation laws are obtained. With the help of the Hirota method and symbolic computation, the one-, two- and three-soliton solutions are given. Besides, breather and double pole solutions are derived. Propagation characteristics and interactions of breathers and solitons are discussed analytically and graphically. Results also show that the soliton changes its type between depression and elevation periodically. Parabolic-like breather and double pole are depicted. Conditions of the depression and elevation solitons are also given.  相似文献   

16.
Fokas system is the simplest (2+1)-dimensional extension of the nonlinear Schr?dinger (NLS) equation (Eq.(2), Inverse Problems 10 (1994) L19-L22).By appropriately limiting on soliton solutions generated by the Hirota bilinear method, the explicit forms of $n$-th breathers and semi-rational solutions for the Fokas system are derived. The obtained first-order breather exhibits arange of interesting dynamics. For high-order breather, it has more rich dynamical behaviors.The first-order and the second-order breather solutions are given graphically. Using the long wave limit in soliton solutions, rational solutions are obtained, which are used to analyze the mechanism of the rogue wave and lump respectively.By taking a long waves limit of a part of exponential functions in $f$ and $g$ appeared in the bilinear form of the Fokas system, many interesting hybrid solutions are constructed. The hybrid solutions illustrate various superposed wave structures involving rogue waves, lumps, solitons, and periodic line waves. Their rather complicated dynamics are revealed.  相似文献   

17.
In this paper, we obtained the exact breather-type kink soliton and breather-type periodic soliton solutions for the (3 + 1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation using the extended homoclinic test technique. Some new nonlinear phenomena, such as kink and periodic degeneracies, are investigated. Using the homoclinic breather limit method, some new rational breather solutions are found as well. Meanwhile, we also obtained the rational potential solution which is found to be just a rogue wave. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.  相似文献   

18.
We study the properties of breather interactions in nonlinear Kerr media with self-steepening and space-time correction and with either self-focusing or self-defocusing nonlinearity, and present a new family of exact breather solutions via the Darboux transformation with a special-designed quadratic spectral parameter. In contrast to the previous results of the nonlinear Schr?dinger equation(NLSE) hierarchy, we show that the relative phase of colliding breathers has a significant effect on the collision manifestation. In particular, only the out-of-phase interactions can generate small amplitude waves at the collision center, which are analogous to the NLSE superregular breathers. Our results will deepen our understanding of the properties of breather interactions and they will offer the possibility of experimental observations of super-regular breather dynamics in systems with self-steepening and space-time correction.  相似文献   

19.
Painlev integrability has been tested for (2+1)D Boussinesq equation with disturbance term using the standard WTC approach after introducing the Kruskai's simplification. New breather solitary solutions depending on constant equilibrium solution are obtained by using Extended Homoclinic Test Method. Moreover, the spatiotemporal feature of breather solitary wave is exhibited.  相似文献   

20.
We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for two- dimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete two- dimensional monatomic β-FPU lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号