首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove spectral and dynamical localization for Anderson models on locally finite graphs using the fractional moment method. Our theorems extend earlier results on localization for the Anderson model on ℤ d . We establish geometric assumptions for the underlying graph such that localization can be proven in the case of sufficiently large disorder.  相似文献   

2.
We study the region of complete localization in a class of random operators which includes random Schrödinger operators with Anderson-type potentials and classical wave operators in random media, as well as the Anderson tight-binding model. We establish new characterizations or criteria for this region of complete localization, given either by the decay of eigenfunction correlations or by the decay of Fermi projections. (These are necessary and sufficient conditions for the random operator to exhibit complete localization in this energy region.) Using the first type of characterization we prove that in the region of complete localization the random operator has eigenvalues with finite multiplicity.  相似文献   

3.
We derive bounds on the integrated density of states for a class of Schrödinger operators with a random potential. The potential depends on a sequence of random variables, not necessarily in a linear way. An example of such a random Schrödinger operator is the breather model, as introduced by Combes, Hislop and Mourre. For these models, we show that the integrated density of states near the bottom of the spectrum behaves according to the so called Lifshitz asymptotics. This result can be used to prove Anderson localization in certain energy/disorder regimes.  相似文献   

4.
This paper establishes dynamical localization properties of certain families of unitary random operators on the d-dimensional lattice in various regimes. These operators are generalizations of one-dimensional physical models of quantum transport and draw their name from the analogy with the discrete Anderson model of solid state physics. They consist in a product of a deterministic unitary operator and a random unitary operator. The deterministic operator has a band structure, is absolutely continuous and plays the role of the discrete Laplacian. The random operator is diagonal with elements given by i.i.d. random phases distributed according to some absolutely continuous measure and plays the role of the random potential. In dimension one, these operators belong to the family of CMV-matrices in the theory of orthogonal polynomials on the unit circle. We implement the method of Aizenman-Molchanov to prove exponential decay of the fractional moments of the Green function for the unitary Anderson model in the following three regimes: In any dimension, throughout the spectrum at large disorder and near the band edges at arbitrary disorder and, in dimension one, throughout the spectrum at arbitrary disorder. We also prove that exponential decay of fractional moments of the Green function implies dynamical localization, which in turn implies spectral localization. These results complete the analogy with the self-adjoint case where dynamical localization is known to be true in the same three regimes.  相似文献   

5.
We prove some abstract Wegner bounds for random self-adjoint operators. Applications include elementary proofs of Wegner estimates for discrete and continuous Anderson Hamiltonians with possibly sparse potentials, as well as Wegner bounds for quantum graphs with random edge length or random vertex coupling. We allow the coupling constants describing the randomness to be correlated and to have quite general distributions.  相似文献   

6.
We consider electromagnetic waves in a medium described by a position dependent dielectric constant . We assume that is a random perturbation of a periodic function and that the periodic Maxwell operator has a gap in the spectrum, where . We prove the existence of localized waves, i.e., finite energy solutions of Maxwell's equations with the property that almost all of the wave's energy remains in a fixed bounded region of space at all times. Localization of electromagnetic waves is a consequence of Anderson localization for the self-adjoint operators . We prove that, in the random medium described by , the random operator exhibits Anderson localization inside the gap in the spectrum of . This is shown even in situations when the gap is totally filled by the spectrum of the random operator; we can prescribe random environments that ensure localization in almost the whole gap. Received: 1 July 1996 / Accepted: 15 August 1996  相似文献   

7.
Anderson localization predicts that wave spreading in disordered lattices can come to a complete halt, providing a universal mechanism for dynamical localization. In the one-dimensional Hermitian Anderson model with uncorrelated diagonal disorder, there is a one-to-one correspondence between dynamical localization and spectral localization, that is, the exponential localization of all the Hamiltonian eigenfunctions. This correspondence can be broken when dealing with disordered dissipative lattices. When the system exchanges particles with the surrounding environment and random fluctuations of the dissipation are introduced, spectral localization is observed but without dynamical localization. Previous studies consider lattices with mixed conservative (Hamiltonian) and dissipative dynamics and are restricted to a semiclassical analysis. However, Anderson localization in purely dissipative lattices, displaying an entirely Lindbladian dynamics, remains largely unexplored. Here the purely-dissipative Anderson model in the framework of a Lindblad master equation is considered, and it is shown that, akin to the semiclassical models with conservative hopping and random dissipation, one observes dynamical delocalization in spite of strong spectral localization of the Liouvillian superoperator. This result is very distinct from delocalization observed in the Anderson model with dephasing, where dynamical delocalization arises from the delocalization of the stationary state of the Liouvillian.  相似文献   

8.
We study a lattice field model which qualitatively reflects the phenomenon of Anderson localization and delocalization for real symmetric band matrices. In this statistical mechanics model, the field takes values in a supermanifold based on the hyperbolic plane. Correlations in this model may be described in terms of a random walk in a highly correlated random environment. We prove that in three or more dimensions the model has a ‘diffusive’ phase at low temperatures. Localization is expected at high temperatures. Our analysis uses estimates on non-uniformly elliptic Green’s functions and a family of Ward identities coming from internal supersymmetry.  相似文献   

9.
It is well recognized that the transmittance of Anderson localized systems decays exponentially on average with sample size, showing large fluctuations brought up by extremely rare occurrences of necklaces of resonantly coupled states, possessing almost unity transmission. We show here that in a one-dimensional (1D) random photonic system with resonant layers these fluctuations appear to be very regular and have a period defined by the localization length xi of the system. We stress that necklace states are the origin of these well-defined oscillations. We predict that in such a random system efficient transmission channels form regularly each time the increasing sample length fits so-called optimal-order necklaces and demonstrate the phenomenon through numerical experiments. Our results provide new insight into the physics of Anderson localization in random systems with resonant units.  相似文献   

10.
We consider a two dimensional magnetic Schrödinger operator with a spatially stationary random magnetic field. We assume that the magnetic field has a positive lower bound and that it has Fourier modes on arbitrarily short scales. We prove the Wegner estimate at arbitrary energy, i.e. we show that the averaged density of states is finite throughout the whole spectrum. We also prove Anderson localization at the bottom of the spectrum.  相似文献   

11.
The self-consistent theory of electron localization in a random system in the form proposed by Vollhardt and Wölfle is generalized for the analysis of localization in the Anderson model. We derive the general equations appropriate for the system with rather general form of the electronic spectrum. Explicit calculations are restricted to the lattices of cubic symmetry and use the effective mass approximation to obtain the final results. Anderson's critical ratio for the localization of all the electronic states in the tight-binding band is evaluated and found to be in surprisingly good agreement with the results of numerical analysis of localization in the Anderson model.  相似文献   

12.
Scattering of light by a random stack of dielectric layers represents a one-dimensional scattering problem, where the scattered field is a three-dimensional vector field. We investigate the dependence of the scattering properties (band gaps and Anderson localization) on the wavelength, strength of randomness and relative angle of the incident wave. There is a characteristic angular dependence of Anderson localization for wavelengths close to the thickness of the layers. In particular, the localization length varies non-monotonously with the angle. In contrast to Anderson localization, absorptive layers do not have this characteristic angular dependence.  相似文献   

13.
We prove exponential localization in the Anderson model under very weak assumptions on the potential distribution. In one dimension we allow any measure which is not concentrated on a single point and possesses some finite moment. In particular this solves the longstanding problem of localization for Bernoulli potentials (i.e., potentials that take only two values). In dimensions greater than one we prove localization at high disorder for potentials with Hölder continuous distributions and for bounded potentials whose distribution is a convex combination of a Hölder continuous distribution with high disorder and an arbitrary distribution. These include potentials with singular distributions.We also show that for certain Bernoulli potentials in one dimension the integrated density of states has a nontrivial singular component.Partially supported by NSF grant DMS 85-03695Partially supported by NSF grant DMS 83-01889Partially supported by G.N.F.M. C.N.R.  相似文献   

14.
The purpose of the present work is to establish decorrelation estimates for the eigenvalues of the discrete Anderson model localized near two distinct energies inside the localization region. In dimension one, we prove these estimates at all energies. In higher dimensions, the energies are required to be sufficiently far apart from each other. As a consequence of these decorrelation estimates, we obtain the independence of the limits of the local level statistics at two distinct energies.  相似文献   

15.
Based on the statistical dynamic mean-field theory, we investigate, in a generic model for a strongly coupled disordered electron–phonon system, the competition between polaron formation and Anderson localization. The statistical dynamic mean-field approximation maps the lattice problem to an ensemble of self-consistently embedded impurity problems. It is a probabilistic approach, focusing on the distribution instead of the average values for observables of interest. We solve the self-consistent equations of the theory with a Monte Carlo sampling technique, representing distributions for random variables by random samples, and discuss various ways to determine mobility edges from the random sample for the local Green function. Specifically, we give, as a function of the ‘polaron parameters’, such as adiabaticity and electron–phonon coupling constants, a detailed discussion of the localization properties of a single polaron, using a bare electron as a reference system.  相似文献   

16.
We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.  相似文献   

17.
We study a lattice sigma model which is expected to reflect Anderson localization and delocalization transition for real symmetric band matrices in 3D, but describes the mixing measure for a vertex reinforced jump process too. For this model we prove exponential localization at any temperature in a strip, and more generally in any quasi-one dimensional graph, with pinning (mass) at only one site. The proof uses a Mermin–Wagner type argument and a transfer operator approach.  相似文献   

18.
We prove lower bounds on the localization length of eigenfunctions in the three-dimensional Anderson model at weak disorders. Our results are similar to those obtained by Schlag, Shubin and Wolff, [J. Anal. Math. 88 (2002)], for dimensions one and two. We prove that with probability one, most eigenfunctions have localization lengths bounded from below by , where λ is the disorder strength. This is achieved by time-dependent methods which generalize those developed by Erdös and Yau [Commun. Pure Appl. Math. LIII: 667–753 (2003)] to the lattice and non-Gaussian case. In addition, we show that the macroscopic limit of the corresponding lattice random Schrödinger dynamics is governed by a linear Boltzmann equation.  相似文献   

19.
Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model, belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or W-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit.  相似文献   

20.
The spectral properties of the Laplacian on a class of quantum graphs with random metric structure are studied. Namely, we consider quantum graphs spanned by the simple ${\mathbb Z^d}$ -lattice with δ-type boundary conditions at the vertices, and we assume that the edge lengths are randomly independently identically distributed. Under the assumption that the coupling constant at the vertices does not vanish, we show that the operator exhibits the Anderson localization near the spectral edges situated outside a certain forbidden set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号