首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract

We present a new asymptotic theory for scalar and vector wave scattering from rough surfaces which federates an extended Kirchhoff approximation (EKA), such as the integral equation method (IEM), with the first and second order small slope approximations (SSA). The new development stems from the fact that any improvement of the ‘high frequency’ Kirchhoff or tangent plane approximation (KA) must come through surface curvature and higher order derivatives. Hence, this condition requires that the second order kernel be quadratic in its lowest order with respect to its Fourier variable or formally the gradient operator. A second important constraint which must be met is that both the Kirchhoff approximation (KA) and the first order small perturbation method (SPM-1 or Bragg) be dynamically reached, depending on the surface conditions. We derive herein this new kernel from a formal inclusion of the derivative operator in the difference between the polarization coefficients of KA and SPM-1. This new kernel is as simple as the expressions for both Kirchhoff and SPM-1 coefficients. This formal difference has the same curvature order as SSA-1 + SSA-2. It is acknowledged that even though the second order small perturbation method (SPM-2) is not enforced, as opposed to the SSA, our model should reproduce a reasonable approximation of the SPM-2 function at least up to the curvature or quadratic order. We provide three different versions of this new asymptotic theory under the local, non-local, and weighted curvature approximations. Each of these three models is demonstrated to be tilt invariant through first order in the tilting vector.  相似文献   

2.
Abstract

The weighted curvature approximation (WCA) was recently introduced by Elfouhaily et al [7] as a unifying scattering theory that reproduces formally both the tangent-plane and the small-perturbation model in the appropriate limits, and is structurally identical to the former approximation with some different slope-dependent kernel. Due to the simplicity of its formulation, the WCA is interesting from a numerical point of view and the aim of the present paper is to establish its accuracy on some representative test cases. We derive statistical formulae for the coherent field and the cross-section in the case of stationary Gaussian random surfaces. We then specialize to the case of isotropic Gaussian spectra and perform numerical comparisons against rigorous method of moments (MoM)-based results on 2D dielectric surfaces. We show that the WCA remains extremely accurate in a roughness range where other first-order classical approximations (small-slope and Kirchhoff) clearly fail, at the same computational cost.

(Some figures in this article are in colour only in the electronic version)  相似文献   

3.
Abstract

This paper is the third in a series discussing a new approximate bistatic model for electromagnetic scattering from perfectly conducting rough surfaces. Our previous approach supplemented the Kirchhoff model through the addition of new terms involving linear orders in slope and surface elevation differences that arise naturally from a second iteration of the surface current integral equation. This completion of the Kirchhoff was shown to provide the correct first-order small perturbation method (SPM-1) in the general bistatic context. The agreement with SPM-1 was achieved because differences of surface heights are no longer expanded in powers of surface slope. While consistent with SPM, our previous formulation fails to reconverge toward the Kirchhoff model, at some incidence and scattered angles, when the illuminated surface satisfies the high frequency roughness condition. This weakness is also shared with the first-order small slope approximation (SSA-1) which is structurally equivalent to our previous formulation where the polarization is independent of surface roughness. The second-order small slope approximation (SSA-2), which satisfies the SPM-1 and second-order small perturbation method (SPM-2) limits by construction, was shown by Voronovich to converge toward the tangent plane approximation of the Kirchhoff model under high frequency conditions. In the present paper, we show that, in addition to the linear orders in our previous model, one must now include cross-terms between slope and surface elevation to ensure convergence toward both high frequency and small perturbation limits. With the inclusion of these terms, our new formulation becomes comparable to the SSA-2 (second-order kernel) without the need to evaluate all the quadratic order slope and elevations terms. SSA-2 is more complete, however, in the sense that it guarantees convergence toward the second-order Bragg limit (SPM-2) in the fully dielectric case in addition to both SPM-1 and Kirchhoff. Our new generalization is shown to explain correctly extra depolarization in specular conditions to be caused by surface curvature and surface autocorrelation for incoherent and coherent scattering, respectively. This result will have large repercussions on the interpretation of bistatically reflected signals such as those from GPS.  相似文献   

4.
This paper is the third in a series discussing a new approximate bistatic model for electromagnetic scattering from perfectly conducting rough surfaces. Our previous approach supplemented the Kirchhoff model through the addition of new terms involving linear orders in slope and surface elevation differences that arise naturally from a second iteration of the surface current integral equation. This completion of the Kirchhoff was shown to provide the correct first-order small perturbation method (SPM-1) in the general bistatic context. The agreement with SPM-1 was achieved because differences of surface heights are no longer expanded in powers of surface slope. While consistent with SPM, our previous formulation fails to reconverge toward the Kirchhoff model, at some incidence and scattered angles, when the illuminated surface satisfies the high frequency roughness condition. This weakness is also shared with the first-order small slope approximation (SSA-1) which is structurally equivalent to our previous formulation where the polarization is independent of surface roughness. The second-order small slope approximation (SSA-2), which satisfies the SPM-1 and second-order small perturbation method (SPM-2) limits by construction, was shown by Voronovich to converge toward the tangent plane approximation of the Kirchhoff model under high frequency conditions. In the present paper, we show that, in addition to the linear orders in our previous model, one must now include cross-terms between slope and surface elevation to ensure convergence toward both high frequency and small perturbation limits. With the inclusion of these terms, our new formulation becomes comparable to the SSA-2 (second-order kernel) without the need to evaluate all the quadratic order slope and elevations terms. SSA-2 is more complete, however, in the sense that it guarantees convergence toward the second-order Bragg limit (SPM-2) in the fully dielectric case in addition to both SPM-1 and Kirchhoff. Our new generalization is shown to explain correctly extra depolarization in specular conditions to be caused by surface curvature and surface autocorrelation for incoherent and coherent scattering, respectively. This result will have large repercussions on the interpretation of bistatically reflected signals such as those from GPS.  相似文献   

5.
The normalized radar cross-section (NRCS) expression of the Local Curvature Approximation (LCA-1) is derived to first order. The polarization sensitivity of this model is compared to the Kirchhoff Approximation (KA), Two-Scale Model (TSM), Small Slope Approximation (SSA-1) and Small Perturbation Method (SPM-1) to first order in the backscattering configuration. Analytical comparisons and numerical simulations show that LCA-1 and TSM could be rewritten with the same formulation and that their polarization sensitivities are comparable. Comparisons with experimental data acquired in C- and Ku-band reveal that the polarization sensitivities of these models are not adequate. However, the NRCS azimuth modulation predicted by LCA-1 is found to be dependent on polarization and sea surface roughness. This property of the LCA-1 model yields to an azimuth modulation for the polarization ratio. Based on the surface curvature correction concept, a simplified electromagnetic model is proposed. The curvature correction is restricted to the resonant wave-number of the sea roughness spectrum. This is found to reproduce the polarization ratio given by experimental data versus incidence angle and wind speed.  相似文献   

6.
The normalized radar cross-section (NRCS) expression of the Local Curvature Approximation (LCA-1) is derived to first order. The polarization sensitivity of this model is compared to the Kirchhoff Approximation (KA), Two-Scale Model (TSM), Small Slope Approximation (SSA-1) and Small Perturbation Method (SPM-1) to first order in the backscattering configuration. Analytical comparisons and numerical simulations show that LCA-1 and TSM could be rewritten with the same formulation and that their polarization sensitivities are comparable. Comparisons with experimental data acquired in C- and Ku-band reveal that the polarization sensitivities of these models are not adequate. However, the NRCS azimuth modulation predicted by LCA-1 is found to be dependent on polarization and sea surface roughness. This property of the LCA-1 model yields to an azimuth modulation for the polarization ratio. Based on the surface curvature correction concept, a simplified electromagnetic model is proposed. The curvature correction is restricted to the resonant wave-number of the sea roughness spectrum. This is found to reproduce the polarization ratio given by experimental data versus incidence angle and wind speed.  相似文献   

7.
This letter presents an approximate second-order electromagnetic model where polarization coefficients are surface dependent up to the curvature order in the quasi-specular regime. The scattering surface is considered 'good-conducting' as opposed to the case for our previous derivation where perfect conductivity was assumed. The model reproduces dynamically, depending on the properties of the scattering surface, the tangent-plane (Kirchhoff) or the first-order small-perturbation (Bragg) limits. The convergence is assumed to be ensured by the surface curvature alone. This second-order model is shown to be consistent with the small-slope approximation of Voronovich (SSA-1+SSA-2) for perfectly conducting surfaces. Our model differs from SSA-1 + SSA-2 in its dielectric expression, to correct for a full convergence toward the tangent-plane limit under the 'good-conducting' approximation. This new second-order formulation is simple because it involves a single integral over the scattering surface and therefore it is suitable for a vast array of analytical and numerical applications in quasi-specular applications.  相似文献   

8.
Abstract

This letter presents an approximate second-order electromagnetic model where polarization coefficients are surface dependent up to the curvature order in the quasi-specular regime. The scattering surface is considered ‘good-conducting’ as opposed to the case for our previous derivation where perfect conductivity was assumed. The model reproduces dynamically, depending on the properties of the scattering surface, the tangent-plane (Kirchhoff) or the first-order small-perturbation (Bragg) limits. The convergence is assumed to be ensured by the surface curvature alone. This second-order model is shown to be consistent with the small-slope approximation of Voronovich (SSA-1+SSA-2) for perfectly conducting surfaces. Our model differs from SSA-1 + SSA-2 in its dielectric expression, to correct for a full convergence toward the tangent-plane limit under the ‘good-conducting’ approximation. This new second-order formulation is simple because it involves a single integral over the scattering surface and therefore it is suitable for a vast array of analytical and numerical applications in quasi-specular applications.  相似文献   

9.
Rigorous and approximate methods are considered for solving the problem of harmonic plane wave scattering from a plane surface arbitrarily perturbed along one dimension on a finite interval. This problem is treated using the Fredholm integral equations of the second kind and the Kirchhoff and Rayleigh approximations. The estimates of the computational efficiency of the integral equation method and the Rayleigh approximation are compared by calculating fields scattered from random rough surfaces in the resonance region (i.e., when the roughness height is comparable to or smaller than the incident wavelength) for an arbitrary incidence of a plane wave. Scattering patterns calculated using the integral equations and the Kirchhoff approximation are discussed in the case of large-scale random rough surface scattering. Particular attention is paid to scattering at near-grazing incidence.  相似文献   

10.
In this paper the physical acoustic method or the Kirchhoff approxima-tion is extended to treat the scattering of a nonrigid surface in order to estimatethe target strength of targets with absorbing coatings.By using the locally planewave approximation,the relationship between the sound pressure and its normalderivative on the surface can be represented by the plane wave reflectioncoefficient and the acoustic impedance of the surface.The resulting modifiedKirchhoff approximation involves the plane wave reflection coefficient.For aimpedance sphere,a comparison between the physical acoustic method and theexact solution shows that the physical acoustic method still is a good approxima-tion at higher κα values.  相似文献   

11.
张彦敏  王运华  赵朝方 《中国物理 B》2010,19(8):84103-084103
It is well known that the sea return echo contains contributions from at least two scattering mechanisms. In addition to the resonant Bragg scattering, the specular point scattering plays an important role as the incidence angle becomes smaller (≤20o). Here, in combination with the Kirchhoff integral equation of scattering field and the stationary phase approximation, analytical expressions for Doppler shift and spectral bandwidth of specular point scattering, which are insensitive to the polarization state, are derived theoretically. For comparison, the simulated results related to the two-scale method (TSM) and the method of moment (MOM) are also presented. It is found that the Doppler shift and the spectral bandwidth given by TSM are insufficient at small incidence angles. However, a comparison between the analytical results and the numerical simulations by MOM in the backscatter configuration shows that our proposed formulas are valid for the specular point scattering case. In this work, the dependences of the predicted results on incidence angle, radar frequency, and wind speed are also discussed. The obtained conclusions seem promising for a better understanding of the Doppler spectra of the specular point scattering fields from time-varying sea surfaces.  相似文献   

12.
Abstract

Tilt invariance is a stringent but necessary condition that a second-order wave scattering model must satisfy in order to qualify for a broad range of applications. This invariance expresses the fact that the scattering model is unchanged whether the tilting of the scattering surface is implemented before or after its reduction to the limit of the small-perturbation method (SPM). Our scattering model is based on a second-order kernel which is quadratic in its lowest order with respect to successive derivatives of the rough surface. Hence, it is termed the local curvature approximation (LCA). We have previously demonstrated that the LCA is approximately tilt invariant in the quasi-specular and quasi-backscattering geometries. In this contribution, LCA is made formally tilt invariant up to first order in the tilting vector. It will be shown that this formal tilt invariance is achieved mainly through inclusion of polarization mixing due to out-of-plane tilt. Even though the LCA formally reduces to the SPM and Kirchhoff limits in addition to tilt invariance, its curvature kernel stays reasonably concise and practical to implement in both analytical and numerical evaluations. This curvature kernel may also be used in the other two formulations of our model, namely the non-local curvature approximation and the weighted curvature approximation.  相似文献   

13.
二维粗糙海面的光散射及其红外成像   总被引:9,自引:3,他引:6  
张延冬  吴振森 《光学学报》2002,22(9):039-1043
首先根据JONSWAP海面功率谱模型数值模拟出二维粗糙海面,采用几何光学近拟与基尔霍夫(Kirchhoff)标量近似计算了二维海面的光散射,计算中将每一面元看成一具有微粗糙度的粗糙面而不是近似地当作平面,并利用投影法与射线追踪法数值计算了一定入射角和散射角下的遮挡函数,有效地提高了海面光散射计算的精确性。最后利用太阳光的光谱辐照度数值模拟了海面的3μm-5μm红外散射图像,对于红外探测器抑制海面反射太阳光造成的亮带干扰具有一定的参考价值。  相似文献   

14.
The X-ray asymmetric Bragg diffraction in a perfect semi-infinite crystal with plane entrance surface is considered taking into account the two-dimensional curvature of the wave front of an incident wave. An expression for reflection coefficient using the Green function is obtained in the approximation of locally plane wave and the rocking curves are investigated as functions of angular departure from the selected exact Bragg direction in the diffraction plane and in the direction perpendicular to the diffraction plane. The shape, position and dimensions of total reflection region of rocking curves are studied depending on the degree of asymmetry of diffraction geometry. The requirements to the spatial and temporal coherence for obtaining the rocking curves are estimated.  相似文献   

15.
16.
罗伟  张民  周平  殷红成 《中国物理 B》2010,19(8):84102-084102
<正>An iterative method in the Kirchhoff approximation is proposed for high frequency multiple electromagnetic scattering from two-dimensional dielectric sea surface.The multiple interaction of the scattering field is characterized with the corrected electromagnetic currents of the wind-driven sea surface.The actual surface currents are approximated with the iterative solution of the corrected currents.A newly developed sea spectrum,Elfouhaily spectrum,is utilized to build the sea surface model.The shadowing correction is improved by the Depth-Buffer algorithm.The validity of the iterative Kirchhoff approximation is verified by the agreement of backscattering coefficients with the measured data.  相似文献   

17.
This paper presents calculations of a new formulation of the three‐dimensional Kirchhoff approximation which allows calculation of the scattering of vector waves from two-dimensional (2D) metal and dielectric rough surfaces containing infinite slopes. Results are presented for scattering from metal surfaces with rectangular surface structures. This type of surface has applications, for example, in remote sensing and in testing or imaging of printed circuits. Some calculations for rectangular-shaped grooves in a plane are presented for the 2D surface method and are compared to previously published results using a different method of calculation. Good agreement is found between the results for the different calculation methods.  相似文献   

18.
应用蒙特卡罗方法实现了粗糙海面的仿真与模拟,建立了基于双积分方程的高功率微波(HPM)近海面传输特性矩量法计算模型。模型采用光滑窗函数对均匀平面波进行调制,把均匀平面波入射调制为锥形波,消除了粗糙海面突然被截断而引起的边缘效应的影响;重新推导了锥形波入射下的基尔霍夫近似公式,并在满足基尔霍夫近似的条件下,通过对比分析,验证了模型的正确性;采用模型计算分析了不同海面几何参数和海水媒质参数对HPM近海面传输系数的影响。结果表明:粗糙海面的均方根高度对HPM传输系数影响明显,均方根高度越大,传输系数越小,能量分布越均匀;另外随着海水介电常数实部和虚部的增加,传输系数均有所增加,并且实部的影响更明显。  相似文献   

19.
We use a rigorous numerical code based on the method of moments to test the accuracy and validity domains of two popular first-order approximations, namely the Kirchhoff and the small-slope approximation(SSA), in the case of two-dimensional rough surfaces. The experiment is performed on two representative types of surfaces: surfaces with Gaussian spectrum, which are the paradigm of single-scale surfaces, and ocean-like surfaces, which belong to the family of multi-scale surfaces. The main outcome of these computations in the former case is that the SSA is outperformed by the Kirchhoff approximation(KA) outside the near-perturbative domain and in fact is quite unpredictable in that its accuracy does not depend only on the slope. For ocean-like surfaces, however, SSA behaves surprisingly well and is more accurate than the KA.  相似文献   

20.
There are several nonlocal scattering models available in the literature. Most of them are given with little or no mention of their expected accuracy. Moreover, high- and low-frequency limits are rarely tested. The most important limits are the low-frequency or the small perturbation method (SPM) and the high-frequency Kirchhoff approximation (KA) or the geometric optics (GO). We are interested in providing some insight into two families of non-local scattering models. The first family of models is based on the Meecham-Lysanov ansatz (MLA). This ansatz includes the non-local small slope approximation (NLSSA) by Voronovich and the operator expansion method by Milder (OEM). A quick review of this first family of models is given along with a novel derivation of a series of kernels which extend the existing models to include some more fundamental properties and limits. The second family is derived from formal iterations of geometric optics which we call the ray tracing ansatz (RTA). For this family we consider two possible kernels. The first is obtained from iteration of the high-frequency Kirchhoff approximation, while the second is an iteration of the weighted curvature approximation (WCA). In the latter case we find that most of the required limits and fundamental conditions are fulfilled, including tilt invariance and reciprocity. A study of scattering from Dirichlet sinusoidal gratings is then provided to further illustrate the performance of the models considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号