首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Abstract

To study the effect of initial stress on the propagation behavior of Love waves in a layered functionally graded piezoelectric structure, a mathematical model is established. The piezoelectric layer is taken as exponentially graded material where as half-space is taken as simply elastic substratum. The coupled electromechanical field equations are solved analytically to obtain the mechanical displacements and electrical potential functions for the piezoelectric layer and elastic substrate. The dispersion relations are obtained for electrically open and short cases. The higher mode Love wave propagation has been considered. For numerical interpretation of the results, four sets of piezoelectric layer and elastic substrate have been taken into consideration. Graphical representation reveals about the effect of initial stress and the effect of inhomogeneity parameter on the phase velocity against wave number for electrically open and electrically short cases, respectively.  相似文献   

2.
The effect of initial stress on the propagation behavior of Love waves in a piezoelectric half-space of polarized ceramics carrying a functionally graded material (FGM) layer is analytically investigated in this paper from the three-dimensional equations of linear piezoelectricity. The analytical solutions are obtained for the dispersion relations of Love wave propagating in this kind of structure with initial stress for both electrical open case and electrical short case, respectively. One numerical example is given to graphically illustrate the effect of initial stress on dispersive curve, phase velocity and electromechanical coupling factor of the Love wave propagation. The results reported here are meaningful for the design of surface acoustic wave (SAW) devices with high performance.  相似文献   

3.
Son MS  Kang YJ 《Ultrasonics》2011,51(4):489-495
This study analytically investigates the propagation of shear waves (SH waves) in a coupled plate consisting of a piezoelectric layer and an elastic layer with initial stress. The piezoelectric material is polarized in z-axis direction and perfectly bonded to an elastic layer. The mechanical displacement and electrical potential function are derived for the piezoelectric coupled plates by solving the electromechanical field equations. The effects of the thickness ratio and the initial stress on the dispersion relations and the phase and group velocities are obtained for electrically open and mechanically free situations. The numerical examples are provided to illustrate graphically the variations of the phase and group velocities versus the wave number for the different layers comparatively. It is seen that the phase velocity of SH waves decreases with the increase of the magnitude of the initial compression stress, while it increases with the increase of the magnitude of the initial tensile stress. The initial stress has a great effect on the propagation of SH waves with the decrease of the thickness ratio. This research is theoretically useful for the design of surface acoustic wave (SAW) devices with high performance.  相似文献   

4.
A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO2, the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour.  相似文献   

5.
Propagation of transverse surface waves in a three-layer system consisting of a piezoelectric/piezomagnetic (PE/PM) bi-layer bonded on an elastic half-space is theoretically investigated in this paper. Dispersion relations and mode shapes for transverse surface waves are obtained in closed form under electrically open and shorted boundary conditions at the upper surface. Two transverse surface waves related both to Love-type wave and Bleustein–Gulyaev (B–G) type wave propagating in corresponding three-layer structure are discussed through numerically solving the derived dispersion equation. The results show that Love-type wave possesses the property of multiple modes, it can exist all of the values of wavenumber for every selected thickness ratios regardless of the electrical boundary conditions. The presence of PM interlayer makes the phase velocity of Love-type wave decrease. There exist two modes allowing the propagation of B–G type wave under electrically shorted circuit, while only one mode appears in the case of electrically open circuit. The modes of B–G type wave are combinations of partly normal dispersion and partly anomalous dispersion whether the electrically open or shorted. The existence range of mode for electrically open case is greatly related to the thickness ratios, with the thickness of PM interlayer increasing the wavenumber range for existence of B–G type wave quickly shortened. When the thickness ratio is large enough, the wavenumber range of the second mode for electrically shorted circuit is extremely narrow which can be used to remove as an undesired mode. The propagation behaviors and mode shapes of transverse surface waves can be regulated by the modification of the thickness of PM interlayer. The obtained results provide a theoretical prediction and basis for applications of PE–PM composites and acoustic wave devices.  相似文献   

6.
Love wave propagation in functionally graded piezoelectric material layer   总被引:1,自引:0,他引:1  
Du J  Jin X  Wang J  Xian K 《Ultrasonics》2007,46(1):13-22
An exact approach is used to investigate Love waves in functionally graded piezoelectric material (FGPM) layer bonded to a semi-infinite homogeneous solid. The piezoelectric material is polarized in z-axis direction and the material properties change gradually with the thickness of the layer. We here assume that all material properties of the piezoelectric layer have the same exponential function distribution along the x-axis direction. The analytical solutions of dispersion relations are obtained for electrically open or short circuit conditions. The effects of the gradient variation of material constants on the phase velocity, the group velocity, and the coupled electromechanical factor are discussed in detail. The displacement, electric potential, and stress distributions along thickness of the graded layer are calculated and plotted. Numerical examples indicate that appropriate gradient distributing of the material properties make Love waves to propagate along the surface of the piezoelectric layer, or a bigger electromechanical coupling factor can be obtained, which is in favor of acquiring a better performance in surface acoustic wave (SAW) devices.  相似文献   

7.
This study reports a theoretical investigation of the propagation of SH-wave in a piezoelectric layer superimposed on a self-reinforced layer overlying an isotropic gravitational half-space. The expressions of the dispersion relation of SH-wave have been established for electrically open and electrically short conditions in closed form. For the purpose of numerical computation, lithium niobate piezoelectric material has been considered. The dispersion curves have been depicted graphically and the prominent impacts of piezoelectric constant, dielectric constant, reinforced parameter, width ratio, and Biot’s gravity parameter on the phase velocity of SH-wave have been unraveled for both the electrical conditions. As a special case of the problem, it is found that the obtained dispersion relation concurs with classical Love wave equation for both the electrical conditions. Moreover, some important peculiarities have also been traced out through numerical computations for both the electrical cases.  相似文献   

8.
This paper investigates the impact of corrugated boundary surfaces, reinforcement on the propagation of Love-type wave in prestressed corrugated heterogeneous fiber-reinforced layer resting over a void pores half-space. The heterogeneity in the upper corrugated layer is caused due to exponential variation in the elastic constants with respect to the space variable pointing positively downwards. The dispersion equation in the complex form has been derived using method of separation of variables. The real and imaginary parts of the complex dispersion equation were separated and found in well agreement with the classical Love wave equation. Also, the attenuation of the Love waves has been discussed. The study reveals that such a medium transmits two fronts of Love waves. The first front depends upon the change in volume fraction of the pores and the second front depends upon the modulus of rigidity of the elastic matrix of the medium. The substantial influence of corrugation parameters, reinforcement, undulatory parameter, initial stress, heterogeneity parameter and position parameter on the phase velocity, and attenuation of Love-type wave have been observed and depicted by means of graph. It has been observed that the phase velocity decreases with the increase in initial stress parameters, heterogeneity, and reinforcement in upper layer.  相似文献   

9.
Starting from the general modal solutions for a homogeneous layer of arbitrary material and crystalline symmetry, a matrix formalism is developed to establish the semianalytical expressions of the surface impedance matrices (SIM) for a single piezoelectric layer. By applying the electrical boundary conditions, the layer impedance matrix is reduced to a unified elastic form whether the material is piezoelectric or not. The characteristic equation for the dispersion curves is derived in both forms of a three-dimensional acoustic SIM and of an electrical scalar function. The same approach is extended to multilayered structures such as a piezoelectric layer sandwiched in between two metallic electrodes, a Bragg coupler, and a semi-infinite substrate as well. The effectiveness of the approach is numerically demonstrated by its ability to determine the full spectra of guided modes, even at extremely high frequencies, in layered plates comprising up to four layers and three materials. Negative slope in f-k curve for some modes, asymptotic behavior at short wavelength regime, as well as wave confinement phenomena made evident by the numerical results are analyzed and interpreted in terms of the surface acoustic waves and of the interfacial waves in connection with the bulk waves in massive materials.  相似文献   

10.
This work presents a theoretical study of the propagation behavior of Bleustein-Gulyaev waves in a layered structure consisting of a functionally graded piezoelectric material (FGPM) layer and a transversely isotropic piezoelectric substrate. The influence of the graded variation of FGPM coefficients on the dispersion relations of Bleustein-Gulyaev waves in the layered structure is investigated. It is demonstrated that, for a certain frequency range of Bleustein-Gulyaev waves, the mechanical perturbations of the particles are restricted in the FPGM layer and the phase velocity is independent of the electrical boundary conditions at the free surface. Results presented in this study can not only provide further insight on the electromechanical coupling behavior of surface waves in FGPM layered structures, but also lend a theoretical basis for the design of high-performance surface acoustic wave (SAW) devices. Supported by the National Natural Science Foundation of China (Grant No. 10632060), the National Basic Research Program of China (Grant No. 2006CB601202), the National 111 Project of China (Grant No. B06024), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070698064)  相似文献   

11.
As to an ideally layered structure with a functionally graded piezoelectric substrate (material parameters change continuously along the thickness direction) and a hard dielectric layer, the existence and propagation behavior of transverse surface waves is studied by analytical technique. The dispersion equations for the existence of the transverse surface waves with respect to phase velocity are obtained for electrically open and short circuit conditions, respectively. A detailed investigation of the effect of gradient coefficient on dispersion relation, electromechanical coupling factor and penetration depth is carried out. It is found by numerical examples that adjusting gradient coefficient makes the electromechanical coupling factor of the transverse surface waves achieve quite high values at some appropriate ratio values of the layer thickness to the wavelength, and at the same time, the penetration depth can be reduced to the same order as the wavelength.  相似文献   

12.
Liu H  Kuang ZB  Cai ZM 《Ultrasonics》2003,41(5):397-405
Based on the theories of nonlinear continuum mechanics, piezoelectricity and elastic waves in solids, theoretical analysis of Bleustein-Gulyaev surface acoustic wave propagation in a prestressed layered piezoelectric structure are described. Numerical calculations are performed for the case that the layer and the substrate are identical LiNbO(3) except that they are polarized in opposite directions. It is found that an almost linear behavior of the relative change in phase velocity versus the initial stress is obtained for both surface electrically free and shorted cases. Potential applications in the design of acoustic wave devices are suggested.  相似文献   

13.
Qian ZH  Hirose S 《Ultrasonics》2012,52(3):442-446
In this paper, we analytically study the dispersion behavior of transverse surface waves in a piezoelectric coupled solid consisting of a transversely isotropic piezoelectric ceramic layer and an isotropic metal or dielectric substrate. This study is a revisit to the stiffened Love wave propagation done previously. Closed-form dispersion equations are obtained in a very simple mathematical form for both electrically open and shorted cases. From the viewpoint of physical situation, two transverse surface waves (i.e., the stiffened Love wave and the FDLW-type wave) are separately found in a PZT-4/steel system and a PZT-4/zinc system. All the observed dispersion curves are theoretically validated through the discussion on the limit values of phase velocity using the obtained dispersion equations. Those validation and discussion give rise to a deeper understanding on the existence of transverse surface waves in such piezoelectric coupled structures. The results can be used as a benchmark for the study of the wave propagation in the piezoelectric coupled structures and are significant in the design of wave propagation in the piezoelectric coupled structures as well.  相似文献   

14.
In the present paper, a mathematical model studying the effect of smooth moving semi-infinite punch on the propagation of Love-type wave in an initially stressed viscoelastic strip is developed. The dynamic stress concentration due to the punch for the force of a constant intensity has been obtained in the closed form. Method based on Weiner–hopf technique which is indicated by Matczynski has been employed. The study manifests the significant effect of various affecting parameters viz. speed of moving punch associated with Love-type wave speed, horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, frequency parameter, and viscoelastic parameter on dynamic stress concentration due to semi-infinite punch. Moreover, some important peculiarities have been traced out and depicted by means of graphs.  相似文献   

15.
An exact approach is used to investigate Rayleigh waves in a functionally graded piezoelectric material (FGPM) layer bonded to a semi infinite homogenous solid. The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x1. The FGPM character imposes that the material properties change gradually with the thickness of the layer. Contrary to the analytical approach, the adopted numerical methods, including the ordinary differential equation (ODE) and the stiffness matrix method (SMM), treat separately the electrical and mechanical gradients. The influences of graded variations applied to FGPM film coefficients on the dispersion curves of Rayleigh waves are discussed. The effects of gradient coefficients on electromechanical coupling factor, displacement fields, stress distributions and electrical potential, are reported. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. Opposite effects are observed on the coupling factor when graded variations are applied separately. A particular attention has been devoted to the maximum of the coupling factor and it dependence on the stratification rate and the gradient coefficient. This work provides with a theoretical foundation for the design and practical applications of SAW devices with high performance.  相似文献   

16.
Du J  Xian K  Wang J 《Ultrasonics》2009,49(1):131-138
SH surface acoustic wave (SH-SAW) propagation in a cylindrically layered magneto-electro-elastic structure is investigated analytically, where a piezomagnetic (or piezoelectric) material layer is bonded to a piezoelectric (or piezomagnetic) substrate. By means of transformation, the governing equations of the coupled waves are reduced to Bessel equation and Laplace equation. The boundary conditions imply that the displacements, shear stresses, electric potential, and electric displacements are continuous across the interface between the layer and the substrate together with the traction free at the surface of the layer. The magneto-electrically open and shorted conditions at cylindrical surface are taken to solve the problem. The phase velocity is numerically calculated for different thickness of the layer and wavenumber for piezomagnetic ceramics CoFe2O4 and piezoelectric ceramics BaTiO3. The effects of magnetic permeability on propagation properties of SH-SAW are discussed in detail. The distributions of displacement, magnetic potential and magneto-electromechanical coupling factor are also figured and discussed.  相似文献   

17.
18.
A vibration analysis of a circular steel substrate surface bonded by a piezoelectric layer with open circuit is presented. A solution for the electrical potential along the thickness direction of the piezoelectric layer satisfying the open circuit electric boundary condition is developed for the first time. The mechanical model and solutions for the vibration analysis of the piezoelectric coupled circular plate are then established based on the developed electrical potential, the Kirchhoff plate model, and the Maxwell equation. The first four mode shapes and the corresponding resonant frequencies of the plate with two standard boundary conditions are presented in numerical simulations and compared with those of a piezoelectric coupled plate with the closed circuit condition. The simulations show that the resonant frequencies of the open circuit piezoelectric coupled plate are higher than those of the closed circuit piezoelectric coupled plate. Corresponding discussions are thus provided for the higher piezoelectric effect from the open circuit piezoelectric layer.  相似文献   

19.
In this paper a multiple strained layer structure with multiple quantum wells as a piezoelectric transducer is proposed for generating and detecting nano ultrasound waves with nanometer wavelength and tera hertz frequency. By inducing femtosecond optical pulses at this strained structure, internal piezoelectric field is changed. As a result longitudinal acoustic phonon oscillations can be treated as nano acoustic waves. It could be noticed in simulated cases that detection of nano ultrasound waves can be used in non destructive testing and high accuracy measurements with this structure. It is also shown that the MQW structure design how influences in generated nano acoustic waves.  相似文献   

20.
陈晓  万明习 《声学学报》2003,28(4):363-367
建立压电覆层复合结构中声导波传播模型,结合弱界面“弹簧”模型,推导了压电覆层复合结构存在刚性、滑移联接界面等几种不同界面条件下声导波的广义频散方程,数值计算钛锆酸铅基压电陶瓷覆层复合结构在不同界面条件下声导波的频散曲线,分析了界面特性对导波传播相速度的影响。数值计算和分析表明为了能够有效地评价界面的特性,选择合适的声波模式和声波频率是非常重要的。实验结果验证了界面假设的有效性,为进一步深入研究以多模式声导波参量为基础的压电覆层复合结构界面特性参数反演方法提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号