首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics and energy gain of an electron in the field of a transverse electric wave propagating inside an elliptical waveguide is analytically investigated by considering the existence of a helical magnet in which the field is perpendicular to the axis of the waveguide and rotating as a function of position along the magnet. Besides, by solving the relativistic momentum and energy equations, the deflection angle and the acceleration gradient of the electron in the waveguide are obtained. It is shown that the electron is deflected due to the field components of the transverse electric mode of this microwave, and at the same time, it is accelerated by these fields. Furthermore, the expressions of the acceleration gradient and deflection angle for an electron in the transverse electric mode inside the plasma elliptical waveguide without a static helical magnet are presented, which was injected initially along the propagation direction of the microwave. The results are graphically presented.  相似文献   

2.
张雅鑫  贾佳  刘盛纲  鄢扬 《中国物理 B》2010,19(10):105202-105202
This paper presents detailed theoretical study on the theory of wave propagation along the coaxial waveguide filled with moving magnetized plasma (CWMMP). Making use of the Lorentz transformation and the constitutive transformation, Maxwell’s equations lead to the coupled non-homogeneous differential equations which govern the wave propagation in CWMMP, and then analytical solutions have been obtained. The discussion about the eigenvalues of the waves and detailed studies on the fields are carried out. It finds that the fields of the CWMMP are composed of two parts with different eigenvalues. Numerical calculations show that because of Doppler shift effect, the eigenvalues of the modes in such a case is quite different from those of the CWMMP. And a detailed discussion on the dispersion characteristic of CWMMP is presented.  相似文献   

3.
Based on a differential equation derived analytically in terms of wakefield potential ?MW in a plasma filled rectangular waveguide, we investigate the wakefield (EMW) generated with the help of Gaussian-like microwave pulse under the effect of microwave frequency (f), pulse duration (τ), waveguide width (b), equilibrium plasma density (n0) and microwave intensity (I). The study conducted for three cases of τ > 1/fp, τ = 1/fp and τ < 1/fp, where fp is the plasma frequency, reveals that the amplitude of the wakefield is increased for the large pulse duration and higher microwave intensity but is decreased with the waveguide width and microwave frequency for all these cases. The wakefield shows stronger dependence on the microwave frequency when the microwave with larger intensity is used. The wakefield decreases at a faster rate with the waveguide width for the case of τ > 1/fp.  相似文献   

4.
傅文杰  鄢扬 《物理学报》2007,56(12):7100-7105
采用等离子体流体理论,研究了高功率微波在等离子体填充波导中的谐波产生,导出了非线性波动方程. 对二次谐波产生进行了数值计算与分析. 理论分析和数值计算表明,高功率微波将在等离子体填充波导中激发起谐波,TE0n模式与TM0n模式的基波都将激发起TM类型的谐波. 关键词: 高功率微波 谐波产生 等离子体填充波导  相似文献   

5.
The electron acceleration inside the plasma-filled rectangular waveguide is numerically investigated for the externally injected single-electron model considering the effects of density modification under a balance between the ponderomotive force and the pressure gradient force. Using Maxwell’s equations, we evaluate the field components of the fundamental mode in the plasma-filled rectangular waveguide, where the obtained equations are solved numerically using the fourth-order Runge–Kutta method for the electric field amplitude of the microwave. Besides, by solving the relativistic momentum and energy equations using the fourth-order Runge–Kutta method, the deflection angle and the total energy of the electron in the waveguide are obtained. Furthermore, it is shown that the electron energy gain can be controlled using superposing microwave fundamental modes. Effects of various parameters on the results are graphically presented.  相似文献   

6.
7.
8.
Analysis of coaxial waveguide partially filled with chiral media   总被引:4,自引:0,他引:4  
In this paper, the canonical problem of coaxial waveguide partially filled with chiral media is analyzed by a new equivalent transmission line network method. Both radial transmission lines in the cross section and multi-mode transmission lines in the longitudinal direction are introduced. The symmetrical properties of the structure are also discussed. Therefore, this method brings a clear physical picture into the wave propagation phenomena. Based on the analysis, the notable features and the role of the chirality parameter of the medium on the reflected and transmitted guided waves are discussed.  相似文献   

9.
In collisional and ponderomotive predominant regimes, the propagation of microwave in rectangular waveguide filled with collisional plasma is investigated numerically. The dominant mode is excited through an evacuated waveguide and then enters a similar and co-axis waveguide filled with plasma. In collisional predominant regime, the amplitude of electric field is oscillated along propagation path; outset of propagation path due to the electron-ion collision, the intensity oscillations are reduced. Afterward, under competition between the collisional nonlinearity and absorption, the intensity is increased, so the electron density peak is created in middle of waveguide. In ponderomotive predominant regime, the intensity is slowly decreased due to collision, so the electron density is ramped. Control parameters, like the frequency, input power, collision frequency, and background electron density are surveyed that can be used to control propagation characteristics of microwave. This method can be used to control heating of fusion plasma and accelerate charged particle.  相似文献   

10.
Nonlinear waves have been studied in a circular waveguide partially filled with a cold magnetized collisionless plasma. The solution obtained is periodical with the frequency increasing as a square root of the amplitude of the solution in the first approximation.The author is indebted to K.Jungwirth, R.Klíma and J.Preinhaelter for valuable discussions.  相似文献   

11.
12.
吴坚强 《强激光与粒子束》2004,16(11):1463-1467
 利用自洽线性场理论,导出了薄环形相对论电子注通过填充等离子体的介质同轴波导中的注波互作用色散方程,得到了注波互作用产生切伦科夫辐射的同步条件和波增长率。分析了填充等离子体后的波与电子注之间的能量交换及等离子体密度对色散特性、波增长率和注波能量交换的影响。分析结果表明:切伦科夫辐射是由沿介质同轴波导传播的慢波与沿薄环形相对论电子注传播的负能空间电荷波耦合所致,且其耦合强度与电子注的密度成正比;输出频率和波增长率随着填充等离子体密度的增大而提高;保持一定的输出频率,增大电子注的束流可得到高的微波输出功率。  相似文献   

13.
A new regime of the sliding propagation of microwave radiation in plasma waveguides in atmospheric air has been investigated experimentally and theoretically. A plasma waveguide whose radius is much larger than the radiation wavelength has been created by the photoionization of an easily ionized impurity by the ultraviolet radiation of a KrF laser. The transfer of a 35.3-GHz microwave signal to a distance of 60 m has been demonstrated. The transfer mechanism is due to the total internal reflection of the wave on the optically less dense walls of the plasma waveguide.  相似文献   

14.
张勇  莫元龙  徐锐敏  延波  谢小强 《物理学报》2005,54(11):5239-5245
从麦克斯韦方程和流体理论出发,推导了填充磁化等离子体慢波结构的基本方程.在大磁场情况下,对等离子体填充盘荷波导的色散特性和耦合阻抗作了研究,结果表明填充等离子体使色散曲线上移,耦合阻抗提高.等离子体填充产生出模式谱非常丰富的周期性低频等离子体模式(TG模式).当等离子体密度增加到一定程度后,场模TM01模的频率范围和TG01模的频率范围相近,两个模式互相耦合产生出新的混合模G1,G2.如果相对论行波管工作在混合模上,将会产生新的工作机理. 关键词: 盘荷波导 等离子体填充 色散特性 相对论行波管  相似文献   

15.
以微波传输线等效二端口网络模型等效电路理论近似分析了含有横向电感膜片矩形波导的结构。计算发现,矩形波导内置一对膜片时膜片的宽度会影响散射参数的相位和振幅,而膜片放置的位置对散射参数的幅值及带宽没有影响。根据微波无反射传输的条件,研究了微波矩形波导内置两组横向电感膜片结构的转移矩阵。采用Matlab编程计算,得到在插入衰减最小时两组膜片在波导中的最佳间距。等效电路理论计算结果与用CST软件仿真的结果相符。研究发现,在膜片间距取最佳值时,两种方法得到的相对带宽差值仅为0.59%。  相似文献   

16.
The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with εr1 = -1/(1 +δ) +iγ and μr1 = -(1 + δ) + iγ. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.  相似文献   

17.
The non-linear propagation of an acoustic beam in a rectangular waveguide is considered. The medium of sound propagation, is a gas where thermodynamically non-equilibrium processes take place: such as exothermic chemical reactions or excitation of vibrational degrees of a molecule’s freedom. The incident and reflected compounds of the acoustic field do not interact in the leading order in the case of periodic weakly nonlinear sound with zero mean value of velocity. The acoustic heating or cooling in a waveguide is discussed.  相似文献   

18.
余观夏 《物理学报》2008,57(1):164-169
The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with $\epsilon_{{\rm r}1}=-1/(1+\delta)+\i\gamma$ and $\mu_{{\rm r}1}=-(1+\delta)+\i\gamma$. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.  相似文献   

19.
20.
等离子体填充波纹波导中低频模式特性分析   总被引:4,自引:0,他引:4       下载免费PDF全文
采用等离子体流体模型和线性场理论,导出了在强引导磁场下,一无限薄环形等离子体加载 波纹波导中电磁波传播的色散关系.数值计算并分析了在不同的等离子体填充密度下,低频 等离子体模式的色散特性和行波管的小信号增益.研究发现,低频等离子体模式可与相对论 电子束发生同步互作用使高频信号放大.同时,在无限薄环形等离子体填充条件下,波纹波 导中的低频等离子体模式严格满足Floquet定理所要求的周期性,其上截止频率不再受到等 离子体频率的限制,当密度较大时,等离子体模式还可与TM模式发生耦合. 关键词: 等离子体 波纹波导 色散关系 增益  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号