首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Design and fabrication of novel inorganic nanomaterials for the low-level detection of food preservative chemicals significant is of interest to the researchers. In the present work, we have developed a novel grass-like vanadium disulfide (GL-VS2) through a simple sonochemical method without surfactants or templates. As-prepared VS2 was used as an electrocatalyst for reduction of hydrogen peroxide (H2O2). The crystalline nature, surface morphology, elemental compositions and binding energy of the as-prepared VS2 were analyzed by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The electrochemical studies show that the GL-VS2 modified glassy carbon electrode (GL-VS2/GCE) has a superior electrocatalytic activity and lower-reduction potential than the response observed for unmodified GCE. Furthermore, the GL-VS2/GCE displayed a wide linear response range (0.1–260 μM), high sensitivity (0.23 μA μM−1 cm−2), lower detection limit (26 nM) and excellent selectivity for detection of H2O2. The fabricated GL-VS2/GCE showed excellent practical ability for detection of H2O2 in milk and urine samples, revealing the real-time practical applicability of the sensor in food contaminants.  相似文献   

2.
Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) on graphite electrode was achieved by gently rubbing the electrode surface on carbon nanotubes supported on a glass slide. The electrochemical behaviour of the modified electrodes was investigated by cyclic voltammetry. The SWNT-modified electrodes showed excellent electrocatalytic effect for the reduction of hydrogen peroxide. A decrease in overvoltage was observed as well as an enhanced peak current compared to a bare graphite electrode for the reduction of hydrogen peroxide. The catalytic current was found to be directly proportional to the amount of hydrogen peroxide taken.  相似文献   

3.

Abstract  

Ag nanoparticles/graphene nanosheet (AgNPs/GN) composites have been rapidly prepared by a one-pot microwave-assisted reduction method, carried out by microwave irradiation of a N,N-dimethylformamide (DMF) solution of graphene oxide (GO) and AgNO3. Several analytical techniques including UV–vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) have been used to characterize the resulting AgNPs/GN composites. It suggests that such composites exhibit good catalytic activity toward reduction of hydrogen peroxide (H2O2), leading to a H2O2 sensor with a fast amperometric response time of less than 2 s. The linear detection range is estimated to be from 0.1 to 100 mM (r = 0.999), and the detection limit is estimated to be 0.5 μM at a signal-to-noise ratio of 3.  相似文献   

4.
In this article, we have reported on the synthesis of ultra-highly concentrated (5.88 M), well-stable Ag nanoparticles (AgNPs). The AgNPs were formed by hydrothermal heat treatment of an aqueous solution of poly [(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] (PQ11), a kind of cationic polyeletrolyte, in the presence of AgNO3 powder at 170 °C, without the additional step of introducing other reducing agents and protective agents. Transmission electron microscopy (TEM) observations reveal that the as-formed AgNPs mainly consist of small nanoparticles about 10 nm in diameter. Most importantly, it was found that such dispersion can form stable films on bare electrode surfaces and the AgNPs contained therein still exhibit notable catalytic performance for reduction of hydrogen peroxide (H2O2). This H2O2 sensor has a fast amperometric response time of less than 3 s. Its linear range is estimated to be from 0.1 to 60 mM (r = 0.993), and the detection limit is estimated to be 1.6 μM at a signal-to-noise ratio of 3.  相似文献   

5.
The chirality of molecules expresses itself, for example, in the fact that a solution of a chiral molecule rotates the plane of linear polarised light. The underlying molecular property is the optical rotatory power (ORP) tensor, which according to time-dependent perturbation theory can be calculated as mixed linear response functions of the electric and magnetic dipole moment operators. Applying a canonical transformation of the Hamiltonian, which reformulates the magnetic dipole moment operator in terms of the operator for the torque acting on the electrons, the ORP of a molecule can be partitioned into atomic and group contributions. In the present work, we investigate the transferability of such individual contributions in a series of small, chiral molecules: hydrogen peroxide, methyl hydroperoxide and dimethyl peroxide. The isotropic atomic or group contributions have been evaluated for the hydrogen, oxygen and carbon atoms as well as for the methyl group at the level of time-dependent density functional theory with the B3LYP exchange-correlation functional employing a large Gaussian basis set. We find that the atomic or group contributions are not transferable among these three molecules.  相似文献   

6.
Benzophenone ((C6H5)2CO) and decafluorobenzophenone ((C6F5)2CO) were applied to elucidate the photochemical reaction pathway of hydrogen peroxide (H2O2) with dimethylsulfoxide (DMSO). When a solution of benzophenone in DMSO was excited with the 355 nm laser light, three transient species were observed in the time-resolved electron paramagnetic resonance spectra: benzophenone ketyl (C6H5)2COH, methylCH3, and methylsulfinic methylCH2SOCH3 radicals. However, when decafluoro-benzophenone was used with DMSO, only ketyl and methylsulfinic methyl radicals were observed under the same experimental conditions. When the reaction of benzophenone and DMSO was carried out in the presence of H2O2, different time profiles ofCH3 radicals were observed. In the reaction of decafluorobenzophenone-DMSO-H2O2, the time profiles of the radicals were not affected by the presence of H2O2. Thus, these results verify thatCH3 radicals are regenerated in a cyclic pathway, in whichCH3 radicals attack H2O2. The regeneration pathway allows us to observe f-pair polarization throughout the lifetime ofCH3 radicals, which last several microseconds, an order of magnitude longer than theT 1 relaxation time ofCH3 radicals.  相似文献   

7.
In this paper, a novel polyelectrolyte multilayer (PEM) film-coated platinum electrode for the selective detection of H2O2 was presented. The PEM film was formed by the layer-by-layer assembly technique. The quartz crystal microbalance experiments showed that the thickness of the prepared Nafion layer was about 8 nm and depended on the pH of poly(allylamine hydrochloride) solution. The combination of different polyanions and polycations layers was investigated, and it is found that ploy(allylamine hydrochloride) (PAH) and Nafion composited film functioned best as a diffusion barrier toward uric acid (UA) and ascorbic acid (AA) while allowed H2O2 to pass through smoothly. When the platinum electrode coated with two-bilayer film, (PAH/Nafion)2, the amperometric responses of 0.1 mM UA and 0.1 mM AA were respectively 0.008 and 0.006 μA, which were only 0.2% or less of the response of 0.1 mM H2O2 (4.0 μA). The linear response range of the electrode toward H2O2 was from 1.0 μM to 1.0 mM, and the detection limit was 0.3 μM. The electrode also displayed high operational stability and long-term storage stability.  相似文献   

8.
The reaction of aldehydes and o-phenylenediamine for the preparation of 2-benzimidazoles has been studied using hydrogen peroxide as an oxidant under ultrasound irradiation at room temperature in this paper. The combination of substoichiometric sodium iodide and ammonium molybdate as co-catalysts, together with using small amounts of hydrogen peroxide, makes this transformation very efficient and attractive under ultrasound. Thus, a mild, green and efficient method is established to carry out this reaction in high yield.  相似文献   

9.
It has been shown previously that bacterial luminescence is reversibly suppressed in vivo and in vitro by both X-rays and hydrogen peroxide. The data presented here show that the mechanisms for this phenomenon is based on the transient oxidation of reduced flavin mononucleotide.  相似文献   

10.
A highly selective, sensitive, fast, and stable amperometric sensor for the determination of hydrogen peroxide residues in aseptic milk is presented. To fabricate this amperometric sensor, a thin film of Prussian blue was first electrodeposited on a glassy carbon electrode and then a Nafion polymer layer was formed on the top. It was found that Nafion film greatly improves the anti-interference ability and the stability of the Prussian blue-modified electrode. Factors that influence the overall analytical performance of the sensor, such as the concentration of Nafion drop and pH value of the electrolyte, were examined. Results show that the prepared sensor possesses efficient electrocatalytic activity towards hydrogen peroxide with the detection limit as low as 0.2 μM and linear range from 0.8 μM to 0.12 mM. The developed sensor was applied to the determination of hydrogen peroxide in milk with satisfactory results.  相似文献   

11.
We demonstrate the first cavity-enhanced optical frequency comb spectroscopy in the mid-infrared wavelength region and report the sensitive real-time trace detection of hydrogen peroxide in the presence of a large amount of water. The experimental apparatus is based on a mid-infrared optical parametric oscillator synchronously pumped by a high-power Yb:fiber laser, a high-finesse broadband cavity, and a fast-scanning Fourier transform spectrometer with autobalancing detection. The comb spectrum with a bandwidth of 200 nm centered around 3.76 μm is simultaneously coupled to the cavity and both degrees of freedom of the comb, i.e. the repetition rate and carrier envelope offset frequency, are locked to the cavity to ensure stable transmission. The autobalancing detection scheme reduces the intensity noise by a factor of 300, and a sensitivity of 5.4×10?9 cm?1?Hz?1/2 with a resolution of 800 MHz is achieved (corresponding to 6.9×10?11 cm?1?Hz?1/2 per spectral element for 6000 resolved elements). This yields a noise equivalent detection limit for hydrogen peroxide of 8 parts-per-billion (ppb); in the presence of 2.8 % of water the detection limit is 130 ppb. Spectra of acetylene, methane, and nitrous oxide at atmospheric pressure are also presented, and a line-shape model is developed to simulate the experimental data.  相似文献   

12.
Molecular Diversity - In the original publication, one of the co-authors name Sana Jamshaid was missed out. The correct authors’ group is updated in this correction.  相似文献   

13.
In this paper, the green synthesis of fluorescent carbon dots (CDs) via one-step hydrothermal treatment of cornstalk was investigated. This approach is facile, economical, and effective. The obtained CDs with an average diameter of 5.2 nm possess many excellent properties such as emitting blue fluorescence under UV light (365 nm), high monodispersity, good stability, excellent water dispersibility, and absolute quantum yield of 7.6%. Then, these CDs were used as sensing probes for the detection of Fe2+ and H2O2 with detection limits as low as 0.18 and 0.21 μM, respectively. This sensing platform shows advantages such as high selectivity, good precision, rapid operation, and avoiding the precipitation of iron oxyhydroxides.
Graphical abstract ?
  相似文献   

14.
In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO3, H2SO4, HCl and H2C2O4. The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70 °C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8 mol L−1 HNO3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance (1H and 13C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4 mol L−1 HNO3 solution, sonicated for 60 min at 30 °C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy.  相似文献   

15.
We prove that a Lyapunov function, for the chemical rate equations for irradiation-produced point defects, exists which ensures their global asymptotic stability.  相似文献   

16.
The potential effects of oxidized multi-walled carbon nanotubes (o-MWCNTs) with a length ranging from 50 to 630?nm on the development and physiology of wheat plants were evaluated by examining their effects on seed germination, root elongation, stem length, and vegetative biomass at a concentration ranging from 10 to 160???g/mL in the plant. Results indicated that after 7?days of exposure to the o-MWCNTs medium, faster root growth and higher vegetative biomass were observed, but seed germination and stem length did not show any difference as compared with controls. Moreover, a physiological study was conducted at cellular level using a traditional physiological approach to evidence the possible alterations in morphology, the cell length of root zone, and the dehydrogenase activity of seedlings. Transmission electron microscopy images revealed that o-MWCNTs could penetrate the cell wall and enter the cytoplasm after being taken up by roots. The cell length of root zone for the seedlings germinated and grown in the o-MWCNTs (80???g/mL) medium increased by 1.4-fold and a significant concentration-dependent increase in the dehydrogenase activity for the o-MWCNT-treated wheat seedlings was detected. These findings suggest that o-MWCNTs can significantly promote cell elongation in the root system and increase the dehydrogenase activity, resulting in faster root growth and higher biomass production.  相似文献   

17.
K Rama Mohana Rao 《Pramana》1990,35(2):141-149
A flow chart (inverted ‘tree’) for generating and identifying the 58 magnetic and 18 polychromatic point groups using a classification for the 32 generating crystallographic point groups is suggested. The idea of colour generator is explored for generating the colour symmetry point groups. The advantages in presenting the identification of colour groups through a tree are discussed.  相似文献   

18.
Cavitation can be effectively used for intensification of chemical reactions due to the production of free radicals and conditions of high temperatures and pressures locally. In the present work, use of cavitation for the intensification of the synthesis of sulfone has been explored. The oxidation of thioether or sulfide to synthesize corresponding sulfone with 30% H2O2 as an oxidant was studied under acoustic cavitation and the results have been compared with the conventional approach based on the use of mechanical agitation. The aim has been also to optimize the different operating conditions viz. molar ratio of reactants to the oxidizing agent, type of the catalyst as well as its concentration, type of the solvent and the reactant concentration, so as to maximize the degree of intensification. It was observed that under the optimized conditions of sonication, the yield of sulfone was about five to six times higher as compared to the conventional approach of using mechanical agitation only.  相似文献   

19.
To ensure high-average-power and long-lifetime second harmonic generation, a dual-V-shaped configuration was designed. In this thermally near-unstable resonator, large fundamental mode size in Nd:YAG rod and small one in LBO crystal could be generated, which improved both the beam quality and the power density. A green output power of 121 W with pulse width of 68 ns and repetition rate of 10 kHz was obtained. To the best of our knowledge, the dual-V-shaped configuration is the first time used for green laser with average output power of more than 100 W.  相似文献   

20.
Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4 - may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号