首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The crystal structure of the [Eu(Tol)3]2 · 2DPH complex (Tol = toluic acid anion, DPG = diphenylguanidine) was determined by X-ray crystallography. The coordination polyhedron of a Eu atom [EuO6] (CN = 8) is a distorted square antiprism with nonplanar quadrilateral faces. Diphenylguanidine molecules have been shown to be randomly distributed over the symmetry centers of a unit cell with site occupancies of 0.5. The π stacking interaction C-H…Cg exists in the structure to stabilize it. Luminescent characteristics of the compound have been determined.  相似文献   

3.
The existence of the [SrF0.8O0.1]2.5[Mn6O12] = Sr2.5Mn6O12.5 ? δF2 compound was established in the SrO-Mn2O3-SrF2 system at 900°C and p(O2) = 1 atm. The crystal structure of strontium fluoromanganite was determined from the X-ray powder diffraction data, electron diffraction, and high-resolution electron microscopy. It can be described in the monoclynic system with four Miller hklm indices: hklm: H = h a* + k b* + l c 1 * + m q 1, q 1, q 1 = c 2 * = γc 1 * , γ ≈ 0.632, aa ≈ 9.72 Å, b ≈ 9.55 Å, c 1 ≈ 2.84 Å, c 2 ≈ 4.49 Å, monoclinic angle γ ≈ 95.6°. The electromotive force method with a solid fluorine ion electrolyte was used to refine the composition of fluoromanganite and determine the thermodynamic functions of its formation from phases neighboring in the phase diagram (SrMn3O6, Mn2O3, SrF2, and oxygen), ΔG°, kJ/mol = ?(111.7 ± 1.9) + (89.5 ± 1.5) × 10?3 T.  相似文献   

4.
A chemical solution was employed for deposition of gadolinium molybdate [β-Gd2(MoO4)3] thin films. Gadolinium acetylacetonate hydrate {[CH3COCH = C(O–)CH3]3Gd·xH2O}, molybdenum isopropoxide {Mo[OCH(CH3)2]5}, and acetylacetone were used in synthesis of this molybdate. Thermal gravimetry and differential scanning calorimetry suggested that crystallization of β-Gd2(MoO4)3 occurs at around 480 °C. Phase-pure, orthorhombic β-Gd2(MoO4)3 films were deposited on Pt/Ti/SiO2/Si(100) substrates. β-Gd2(MoO4)3 films crystallized at 750 °C showed a strong (00l) preferred orientation. The film dielectric constant measured was 10~14 and the dielectric loss was less than 3%. There was no marked signature in the permittivity at the bulk Curie temperature, approximately 159 °C.  相似文献   

5.
Supramolecular compounds [Mn(H2O)4(C36H36N24O12)]2[Re4Te4(CN)12]·12.5H2O (1), (H3O)2[{Mn(H2O)4 (C36H36N24O12)}{Mn(H2O)4} 2{Re4Te4(CN)12}2]·3.5H2O (2) and [{Mn(H2O)3Cl} 2(C36H36N24O12)]Cl2·6H2O (3) were obtained by crystallization at room temperature from water solutions containing macrocyclic cavitand cucurbituryl (C36H36N24O12), aqua complex of manganese(II) (1–3) and chalcocyanide cluster complex [Re4Te4(CN)12]4? (1, 2). From XRD analysis, the cucurbituryl molecule is bound with one (1, 2) or two atoms of manganese (3) through oxygen atoms of carbonyl groups. Compound 2 has a chain structure where cluster complexes of rhenium are linked through bridge manganese atoms into a polymeric ribbon. Compounds 1 and 3 have the island-like type of structure.  相似文献   

6.
The crystal structure of the double complex salt (DCS) [PdEn2]3[Rh(NO2)6]2 ? 2.67H2O (I) has been determined by X-ray diffraction. Crystals are triclinic, space group \(P\bar 1\), Z = 4, a = 9.2331(3) Å, b = 9.9136(4) Å, c = 13.7824(5) Å, α = 84.3230(14)°, β = 89.9655(14)°, γ = 66.7272(13)°, V = 1152.19(7) Å3, ρcalcd = 2.141 g/cm3, R = 0.0279. The thermal behavior of complex salt I has been studied in various gas atmospheres. The end product of thermolysis in reductive atmosphere is a mixture of Pd0.45Rh0.55 and Pd0.95Rh0.05 solid solutions. The end product of thermolysis in an inert atmosphere is a homogeneous Pd0.6Rh0.4 solid solution.  相似文献   

7.
The phase equilibria of the Ag–Bi–Te–I system in the part AgI–Bi–Bi2Te3–BiTeI is studied in the interval of 500–540 K by means of physicochemical analysis. Thermodynamic properties of phases are determined via EMF. Potential-forming processes occur in electrochemical cells (ECCs) of the C|Ag|glass Ag3GeS3I|D|C structure (where C denotes inert (graphite) electrodes; Ag, D denotes ECC electrodes; D denotes four-phase alloys of the AgI–Bi–Bi2Te3–BiTeI system; and Ag3GeS3I glass is the selective Ag+ conducting membrane). Linear dependences of the EMFs of cells Е(Т) in the interval of 505–535 K are used to calculate the values of the thermodynamic functions of BiTeI, Bi2TeI, and Bi4TeI1.25 phases saturated over silver.  相似文献   

8.
The title complex [Ni(Im)6](DBSH)2 · 2DMF(H2DBSH = 3,5-dibromosalicylaldehyde, Im = imidazole, DMF = N,N-dimethylformamide) has been prepared and characterized by X-ray diffraction analysis. It crystallizes in the monoclinic system, space group P21/c with a = 14.7271(13), b = 9.0221(8), c = 18.1143(16) Å, β = 100.408(2)°, V = 2367.2(4) Å3, Z = 2, M r = 1171.22, F(000) = 1172, ρ c = 1.643 g/cm3 and μ(MoK α) = 3.844 mm?1. The structure was refined to R = 0.0425 and wR = 0.1052 for 3646 observed reflections. The X-ray crystal structure analysis revealed that the center nickel(II) cation is bonded to six nitrogen atoms from six imidazole to form a six-coordinated elongated octahedron. The complex includes a DBSH2? anion and two DMF solvates. The intramolecular and intermolecular hydrogen bonds in the crystal structure play remarkably important role in the thermostability of the title complex. The electrochemical properties were studied in DMF with an electrochemical analyzer.  相似文献   

9.
A novel one-dimensional manganese(II) complex containing nitronyl nitroxide radical [Mn2(IM2-py)2(Ac)21,1-N3)(μ1,3-N3) · EtOH] n was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group p21/n. Each Mn(II) ion is six-coordinated in a distorted octahedral environment. The two N atoms of the nitronyl nitroxide radical and the two O atoms of acetate ligands are in the equatorial plane, whereas the two different azido bridging ligands are in trans axial position. Mn(II) ions are linked by nitrogen atom of μ1,1-azido and oxygen atoms of two carboxy groups to form a Mn-Mn unit. Mn-Mn units are linked by azido ligands through μ1,3 bridging style to form a one-dimensional chain. The compound is connected by the coordination bonds, π-π interactions and hydrogen bonds as a three-dimensional structure. Magnetic susceptibility data support that there are stronger antiferromagnetic interactions between the radical and Mn(II) ion, weak antiferromagnetic interactions between the Mn-R units, and very weak antiferromagnetic interactions between the R-Mn-Mn-R units.  相似文献   

10.
11.
Mo6Se8(Ph3P)6·2H2O cluster complex has been synthesized and its structure has been defined. The compound is triclinic, space group P1ˉ, with unit cell parameters a = 14.3356(5) Å, b = 15.7882(4) Å, c = 25.3949(8) Å, = 95.9750(10)°, β = 91.1030(10)°, γ= 112.2570(10)°, V = 5279.8(3) Å3, Z = 2, ρcalc = 1.772 g/cm3. The complex has a molecular structure. The molybdenum atoms of the {Mo6Se8} cluster nucleus are coordinated by the phosphorus atoms of triphenylphosphine molecules. Original Russian Text Copyright ? 2007 by Yu. V. Mironov, Zh. S. Kozhomuratova, D. Yu. Naumov, and V. E. Fedorov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No. 2, pp. 389–393, March–April, 2007.  相似文献   

12.
A new Co(III) complex of 1,2-cyclohexanedionedioxime and thiocarbamide with an SO 4 2? anion and solvation water molecules in the outer sphere has been synthesized and its structure has been defined. Orthorhombic crystals, a = 11.659(2) Å, b = 26.448(5) Å, c = 30.142(6) Å, V = 9295(3) Å 3, Z = 8, dcalc = 1.599 g/cm3, space group Pbca; final R index is 0.0578 for 8221 reflections with I > 2σ(I). In the octahedral Co(III) complex, two 1,2-cyclohexanedionedioxime residues lie in the equatorial plane, while two thiocarbamide molecules are in the axial plane. Intramolecular bonds: N-H…O and O-H…O type hydrogen bonds and π-π interactions that stabilize the complex cations. In crystal, the components are linked by N-H…O and O-H…O hydrogen bonds into a 3D framework.  相似文献   

13.
Double complex salts (DCS) [RuNO(NH3)4(H2O)]2[MCl4]Cl4·2H2O, M = Pt (I) and Pd (II), are prepared and characterized using IR spectroscopy, single crystal and powder X-ray diffraction, and thermogravimetric analysis. Crystalline phases of I and II are isostructural (P2(1)/n space group) and have the following crystallographic characteristics: a = 6.689 Å, b = 15.609 Å, c = 12.348 Å, V = 1289.1 Å3, Z = 2, d x = 2.425 g/cm3 (I) and a = 6.637 Å, b = 15.521 Å, c = 12.244 Å, V = 1261.2 Å3, Z = 2, d x = 2.255 g/cm3 (II). The thermolysis of the obtained DCS in the hydrogen atmosphere affords two-phase mixtures of limited solid solutions of the metals: hcp for ruthenium-based ones and fcc for Pt or Pd based solutions. On decomposition in the helium atmosphere the products contain a minor amount of RuO2. For the phases obtained during thermolysis the parameters are determined and the compositions are estimated. The heating of I to 400°C in the helium-air atmosphere yields a nanocrystalline composite Pt+RuO2 with CSR of ~20 nm.  相似文献   

14.
The molecular dynamics simulation method was for the first time used to study the structural and energy parameters of H3PO4, H2PO4, and (DMFA)H+ (protonated dimethylformamide) in liquid N,N-dimethylformamide. The predominant orientation of the nearest neighbors of H3PO4, H2PO4, DMFA, and (DMFA)H+ was determined from ranked distribution functions. The most probable structure of H-bonded complexes was obtained. It was shown that H3PO4 formed H-bonds with two DMFA molecules, and and (DMFA)H+ formed H-bonds with one molecule. The dependence of Coulomb interaction energies on the distance between H3PO4, H2PO4, (DMFA)H+, and DMFA had the form of damped oscillations, as is characteristic of intermolecular interactions in pure DMFA. The molecular dynamics simulation of the H2PO4-(DMFA)H+-DMFA ternary system showed a high probability of the formation of contact ion pairs.  相似文献   

15.
A novel binuclear Cobalt(II) complex with N-(2-propionic acid)-salicyloyl hydrazone (C10H10N2O4, H3L) was prepared and characterized. The crystal structure of [Co(C10H9N2O4)2] · 3H2O was determined by X-ray single-crystal diffractometry. The Co2+ ion is six-coordinated by the carboxyl and acyl O atoms and azomethine N atoms of two tridentate N-(2-propionicacid)-salicyloyl hydrazone ligands, which form two stable five-numbered rings sharing one side in the keto form. The coordination environment around the Co2+ ion might be described as a distorted octahedron. Abundant hydrogen bonds of the types O-H…N and O-H…O between the water molecules and ligands not only form the three-dimensional network, but also provide an extrastability for the crystal. The complex was studied for the interaction with calf thymus DNA by electronic absorption titration and emission titration. The results show that the complex is bound to calf thymus DNA mainly by intercalation. The article is published in the original.  相似文献   

16.
Under hydrothermal conditions, the complex [Mn(lmdc)2(H2O)2] · 2H2O (I) was synthesized and characterized by elemental analysis and IR spectrum (HImdc = 4,5-imidazofedicarboxylic acid). The crystal structure of I was determined by single-crystal X-ray diffraction (crystallizing in the monoclinic crystal system, P 2/c space group, a = 11.000(2), b = 7.1281(14), c = 12.696(3) Å, β = 122.45(3), Z = 2. In I, the Mn2+ ion was chelated by two Imdc with one of their nitrogen atoms and a carboxylic oxygen atom, while two water molecules occupy the axial position of the Mn atom forming a distorted octahedral geometry. Three-dimensional structure of I was formed by intermolecular hydrogen bonds. UV-Vis and fluorescence spectra of I interacting with DNA show that insertion is the main binding mode between I and fish sperm DNA. Gel electrophoresis shows that I cleaves both supercoiled and circular pBR322 DNA to form a small molecular fragment.  相似文献   

17.
Seven new metal complexes with alcoxy-NNO-azoxy compounds were synthesized and isolated in a crystalline state. The crystal and molecular structures of С5H12N4O6 were established by X-ray diffraction. Some spectral criteria of coordination were determined, and the complexation processes in solutions were studied.  相似文献   

18.
In the reaction of Na2Se with [Fe(CO)5] in isopropanol with subsequent acidification with HCl, which is used to synthesize [(μ-H)2Fe33-Se)(CO)9] (II), the cluster [(μ-H)2Fe53-Se)2(CO)14] (I) was detected. In assumption that compound I could serve as a suitable synthon for preparing the bulky heterometallic clusters, its reactions with the Rh-containing complexes were studied. The reaction of I with [Rh(CO)2Cp*] (Cp* is pentamethylcyclopentadienyl) was found to give a mixture of the products. The main reaction products were isolated and their structures were determined: [Fe2Rh(μ3-Se)2(CO)6Cp*], [Fe2Rh(μ3-Se)(μ3-CO)(CO)6Cp*], [FeRh23-Se)(μ-CO)(CO)3Cp 2 * ], [Fe2Rh24-Se)(μ-CO)4(CO)2Cp 2 * ]. Potassium hydride treatment of II with subsequent addition of [Cp*Rh(CH3CN)3](CF3SO3)2 leads to the well-known cluster complex [Fe3Rh(μ4-Se)(CO)9Cp*]. A set of the reaction products indicates that the {Fe5Se2} core cannot be used as one-piece “building block” in the synthesis of heterometallic clusters.  相似文献   

19.
The complex [(HOCH2)3CNH3] 2 + [HgI4]2? (I) was synthesized by reacting (trioxymethyl)methylammonium iodide with mercury dioide (2: 1 mol/mol) in acetone. X-ray crystallography shows that the complex consists of two types of crystallographically independent [(HOCH2)3CNH3]+ cations and tetrahedral anions [HgI4]2? (IHgI, 106.49(2)°–113.99(4)°; Hg-I, 2.7849(8)-2.8105(8) Å. [(HOCH2)3CNH3]+ cations are linked via hydrogen bonds O…H-N and O-H…N (O…N, 2.84–2.92 Å) to form polymer chains, which are cross-linked with one another via anions (I…H, 2.81, 2.82 Å).  相似文献   

20.
The thermal decomposition of magnesium hydrogen phosphate trihydrate MgHPO4 · 3H2O was investigated in air atmosphere using TG-DTG-DTA. MgHPO4 · 3H2O decomposes in a single step and its final decomposition product (Mg2P2O7) was obtained. The activation energies of the decomposition step of MgHPO4 · 3H2O were calculated through the isoconversional methods of the Ozawa, Kissinger–Akahira–Sunose (KAS) and Iterative equation, and the possible conversion function has been estimated through the Coats and Redfern integral equation. The activation energies calculated for the decomposition reaction by different techniques and methods were found to be consistent. The better kinetic model of the decomposition reaction for MgHPO4 · 3H2O is the F 1/3 model as a simple n-order reaction of “chemical process or mechanism no-invoking equation”. The thermodynamic functions (ΔH*, ΔG* and ΔS*) of the decomposition reaction are calculated by the activated complex theory and indicate that the process is non-spontaneous without connecting with the introduction of heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号