共查询到20条相似文献,搜索用时 31 毫秒
1.
Shock waves in saturated thermoelastic porous media 总被引:1,自引:0,他引:1
The objective of this paper is to develop and present the macroscopic motion equations for the fluid and the solid matrix, in the case of a saturated porous medium, in the form of coupled, nonlinear wave equations for the fluid and solid velocities. The nonlinearity in the equations enables the generation of shock waves. The complete set of equations required for determining phase velocities in the case of a thermoelastic solid matrix, includes also the energy balance equation for the porous medium as a whole, as well as mass balance equations for the two phase. In the special case of a rigid solid matrix, the wave after an abrupt change in pressure propagates only through the fluid. 相似文献
2.
3.
In the present paper the theory of micropolar generalized thermoelastic continua has been employed to study the propagation
of plane waves in micropolar thermoelastic plates bordered with inviscid liquid layers (or half-spaces) with varying temperature
on both sides. The secular equations in closed form and isolated mathematical conditions are derived and discussed. Thin plate
and short wave length results have also been deduced under different cases and situations and discussed as special cases of
this work. The results in case of conventional coupled and uncoupled theories of thermoelasticity can be obtained both in
case of micropolar elastic and elastokinetics from the present analysis by appropriate choice of relevant parameters. The
various secular equations and relevant relations have been solved numerically by using functional iteration method in order
to illustrate the analytical developments. Effect of characteristic length and coupling factors have also been studied on
phase velocity. The computer simulated results in case of phase velocity, attenuation coefficient and specific loss of symmetric
and skew symmetric are presented graphically. 相似文献
4.
Summary Nonlinear thermoelastic continua with Fourier's type of heat conduction illustrate complex systems composed of internal and reaction-diffusion subsystems. An evolution equation is derived for the observable variable (deformation) when temperature effects are viewed as internal processes. This approach, which pertains to the so-called instantaneous wave analysis, shows that thermal losses accompanying the deformation wave correspond to the low-frequency approximation. 相似文献
5.
Yu. V. Nemirovskii K. M. Shlemenzon 《Journal of Applied Mechanics and Technical Physics》1981,22(3):426-434
In the present work, the dynamic problem of coupled thermoelasticity with the most general type of nonuniformity and anisotropy is analyzed. The hyperbolic nature of the system of equations of coupled thermoelasticity is demonstrated, effects of extinction of separate waves by superposition of elastic and thermoelastic wave fronts are investigated, and the interrelationship of different orders of discontinuity of stresses, displacements, and temperature is determined. The case of the uncoupled problem of thermoelasticity is especially analyzed. Sufficient conditions are obtained for the dynamic density for wave processes in thermoelasticity, previously investigated for boundary value problems of hyperbolic systems of second order differential equations [1], andelastic stress waves [2] are obtained. The generally accepted system of tensor notation for the theory of thermoelasticity is used [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 154–163, May–June, 1981. 相似文献
6.
This study is concerned with the reflection and transmission of plane waves at an imperfectly bonded interface between two orthotropic micropolar elastic half-spaces with different elastic and micropolar properties. There exist three types of coupled waves in xy-plane. The reflection and transmission coefficients of quasi-longitudinal (QLD) wave, quasi-coupled transverse microrotational (QCTM) wave and quasi-coupled transverse displacement (QCTD) wave have been derived for different incidence waves and deduced for normal force stiffness, transverse force stiffness, transverse couple stiffness and perfect bonding. The numerical values of modules of the reflection and transmission coefficients are presented graphically with the angle of incidence for orthotropic micropolar medium (MOS) and isotropic micrpolar medium (MIS). Some particular cases of interest have been deduced from the present investigation. 相似文献
7.
Rajneesh Kumar Geeta Partap 《应用数学和力学(英文版)》2007,28(3):369-383
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement. 相似文献
8.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement. 相似文献
9.
The properties of acceleration waves are investigated for situations in which the waves propagate in isotropic heat-conducting elastic media subject to arbitrary sets of constraints. Conditions under which waves may exist in the presence of constraints are investigated for classes of constraints broad enough to encompass all those encountered in practice. Attention is focussed on principal waves, and results are presented for the growth of the amplitudes of such waves first for fronts of arbitrary curvature, and subsequently by specialisation for plane, cylindrical and spherical waves travelling in material which has undergone one-dimensional plane deformation, cylindrically symmetric and spherically symmetric deformation, respectively. 相似文献
10.
A method to examine the stability in case of weak discontinuity waves (acceleration waves) propagating in isotropic media in which mechanical relaxation phenomena occur is used in the case of non linearity. An upper bound for the initial distribution density is obtained. 相似文献
11.
Francesca PassarellaVincenzo Tibullo Vittorio Zampoli 《Mechanics Research Communications》2011,38(7):512-517
In the present paper we consider an orthotropic micropolar elastic material subject to a state of plane strain. In this context, we establish necessary and sufficient conditions for the strong ellipticity of constitutive coefficients. Furthermore, we study existence of progressive plane waves under the strong ellipticity conditions previously determined. Finally, we detail the results obtained for a specific class of materials related to tetragonal systems. 相似文献
12.
13.
14.
15.
The present paper framed to study the impact of heterogeneity on propagation of Love wave in a heterogeneous micropolar layer over an elastic inhomogeneous stratum, when both rigidity and density are assumed to vary linearly with depth. The equations of motion have been formulated separately for layer and half-space under suitable boundary conditions. Analytical solution for the dispersion equation has been obtained using method of separation of variables by means of the Airy function and Whittaker function. Some particular cases have also been investigated. Further, as a special case the velocity equation for isotropic layer over a homogeneous half-space coincides with the standard result of Love wave. Numerical calculations of frequency relation have been performed and depicted by means of graphs to exhibit the substantial impact of heterogeneity, micropolar parameters and wave number on the phase velocity of Love wave. The wave velocity is strongly influenced by these parameters. 相似文献
16.
Martin Ostoja-Starzewski 《Archive of Applied Mechanics (Ingenieur Archiv)》2011,81(7):899-906
We determine the macrohomogeneity (Hill-Mandel type) condition in the dynamic response of inhomogeneous micropolar (Cosserat) materials. The setting calls for small deformation gradients and curvatures, but without restrictions on the constitutive behavior and without any requirements of spatial periodicity. The condition gives admissible boundary loadings, along with extra terms representing kinetic energy contributions of both classical type and micropolar type. The said loadings involve various combinations of average stresses and strains, along with couple-stresses and curvature-torsion tensors. If applied to a specific microstructure in a computational mechanics approach, these boundary loadings will allow one to determine scale-dependent homogenization toward a representative volume element (RVE) of an equivalent homogeneous micropolar medium in either elastic or inelastic settings. By restricting the continuum model to an inhomogeneous Cauchy continuum and/or a quasi-static setting, the macrohomogeneity condition simplifies to conventional versions. 相似文献
17.
18.
Rajneesh Kumar Geeta Partap 《应用数学和力学(英文版)》2006,27(8):1049-1059
The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit, the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically. 相似文献
19.
20.
The present study deals with the propagation of time harmonic waves in an infinite thermoelastic medium with microtemperatures within the context of the theory developed by Iesan and Quintanilla (2000). There exist three sets of coupled dilatational waves and a shear wave propagating at distinct speeds. Each set of coupled dilatational waves consists of displacement, micro and macrotemperature fields, while the lone shear wave is no different from that exist in classical elasticity. The reflection phenomenon of these waves from a plane boundary of a thermoelastic half space has been investigated. 相似文献