首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

2.
A local as well as a semilocal convergence analysis for Newton–Jarratt–type iterative method for solving equations in a Banach space setting is studied here using information only at a point via a gamma-type condition (Argyros in Approximate Solution of Operator Equations with Applications, [2005]; Wang in Chin. Sci. Bull. 42(7):552–555, [1997]). This method has already been examined by us in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]), where the order of convergence four was established using however information on the domain of the operator. In this study we also establish the same order of convergence under weaker conditions. Moreover we show that all though we use weaker conditions the results obtained here can be used to solve equations in cases where the results in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]) cannot apply. Our method is inverse free, and therefore cheaper at the second step in contrast with the corresponding two–step Newton methods. Numerical Examples are also provided.  相似文献   

3.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

4.
This article continues Ros?anowski and Shelah (Int J Math Math Sci 28:63–82, 2001; Quaderni di Matematica 17:195–239, 2006; Israel J Math 159:109–174, 2007; 2011; Notre Dame J Formal Logic 52:113–147, 2011) and we introduce here a new property of (<λ)-strategically complete forcing notions which implies that their λ-support iterations do not collapse λ + (for a strongly inaccessible cardinal λ).  相似文献   

5.
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61–97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy–Boussinesq equations, which is a degenerate version of the Navier–Stokes–Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge–Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375–417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141–1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131–151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20–31, 1991, Arch. Ration. Mech. Anal. 185:341–363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450–1461, 1998; Loeper in SIAM J. Math. Anal. 38:795–823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov–Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29–59, 2001) and of the Keller–Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225–234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819–824, 1992; Chalub et al. in Mon. Math. 142:123–141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier–Stokes–Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359–378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier–Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179–184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127–150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139–154, 2007).  相似文献   

6.
We establish a new theorem of existence (and uniqueness) of solutions to the Navier-Stokes initial boundary value problem in exterior domains. No requirement is made on the convergence at infinity of the kinetic field and of the pressure field. These solutions are called non-decaying solutions. The first results on this topic dates back about 40 years ago see the references (Galdi and Rionero in Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980; Knightly in SIAM J. Math. Anal. 3:506–511, 1972). In the articles Galdi and Rionero (Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980) it was introduced the so called weight function method to study the uniqueness of solutions. More recently, the problem has been considered again by several authors (see Galdi et al. in J. Math. Fluid Mech. 14:633–652, 2012, Quad. Mat. 4:27–68, 1999, Nonlinear Anal. 47:4151–4156, 2001; Kato in Arch. Ration. Mech. Anal. 169:159–175, 2003; Kukavica and Vicol in J. Dyn. Differ. Equ. 20:719–732, 2008; Maremonti in Mat. Ves. 61:81–91, 2009, Appl. Anal. 90:125–139, 2011).  相似文献   

7.
In this paper, we first investigate several rigidity problems for hypersurfaces in the warped product manifolds with constant linear combinations of higher order mean curvatures as well as “weighted” mean curvatures, which extend the work (Brendle in Publ Math Inst Hautes Études Sci 117:247–269, 2013; Brendle and Eichmair in J Differ Geom 94(94):387–407, 2013; Montiel in Indiana Univ Math J 48:711–748, 1999) considering constant mean curvature functions. Secondly, we obtain the rigidity results for hypersurfaces in the space forms with constant linear combinations of intrinsic Gauss–Bonnet curvatures $L_k$ . To achieve this, we develop some new kind of Newton–Maclaurin type inequalities on $L_k$ which may have independent interest.  相似文献   

8.
Northcott’s book Finite Free Resolutions (1976), as well as the paper (J. Reine Angew. Math. 262/263:205–219, 1973), present some key results of Buchsbaum and Eisenbud (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974) both in a simplified way and without Noetherian hypotheses, using the notion of latent nonzero divisor introduced by Hochster. The goal of this paper is to simplify further the proofs of these results, which become now elementary in a logical sense (no use of prime ideals, or minimal prime ideals) and, we hope, more perspicuous. Some formulations are new and more general than in the references (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974; Finite Free Resolutions 1976) (Theorem 7.2, Lemma 8.2 and Corollary 8.5).  相似文献   

9.
In this paper, we prove a local in time unique existence theorem for the free boundary problem of a compressible barotropic viscous fluid flow without surface tension in the \(L_p\) in time and \(L_q\) in space framework with \(2 < p < \infty \) and \(N < q < \infty \) under the assumption that the initial domain is a uniform \(W^{2-1/q}_q\) one in \({\mathbb {R}}^{N}\, (N \ge 2\) ). After transforming a unknown time dependent domain to the initial domain by the Lagrangian transformation, we solve problem by the Banach contraction mapping principle based on the maximal \(L_p\) \(L_q\) regularity of the generalized Stokes operator for the compressible viscous fluid flow with free boundary condition. The key issue for the linear theorem is the existence of \({\mathcal {R}}\) -bounded solution operator in a sector, which combined with Weis’s operator valued Fourier multiplier theorem implies the generation of analytic semigroup and the maximal \(L_p\) \(L_q\) regularity theorem. The nonlinear problem we studied here was already investigated by several authors (Denisova and Solonnikov, St. Petersburg Math J 14:1–22, 2003; J Math Sci 115:2753–2765, 2003; Secchi, Commun PDE 1:185–204, 1990; Math Method Appl Sci 13:391–404, 1990; Secchi and Valli, J Reine Angew Math 341:1–31, 1983; Solonnikov and Tani, Constantin carathéodory: an international tribute, vols 1, 2, pp 1270–1303, World Scientific Publishing, Teaneck, 1991; Lecture notes in mathematics, vol 1530, Springer, Berlin, 1992; Tani, J Math Kyoto Univ 21:839–859, 1981; Zajaczkowski, SIAM J Math Anal 25:1–84, 1994) in the \(L_2\) framework and Hölder spaces, but our approach is different from them.  相似文献   

10.
We present new sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of an equation in a Banach space setting. Upper bounds on the limit points of majorizing sequences are also given. Numerical examples are provided, where our new results compare favorably to earlier ones such as Argyros (J Math Anal Appl 298:374–397, 2004), Argyros and Hilout (J Comput Appl Math 234:2993-3006, 2010, 2011), Ortega and Rheinboldt (1970) and Potra and Pták (1984).  相似文献   

11.
We provide new sufficient convergence conditions for the semilocal convergence of Ulm’s method (Izv. Akad. Nauk Est. SSR 16:403–411, 1967) in order to approximate a locally unique solution of an equation in a Banach space setting. We show that in some cases, our hypotheses hold true but the corresponding ones (Burmeister in Z. Angew. Math. Mech. 52:101–110, 1972; Kornstaedt in Aequ. Math. 13:21–45, 1975; Petzeltova in Comment. Math. Univ. Carol. 21:719–725, 1980; Potra and Ptǎk in Cas. Pest. Mat. 108:333–341, 1983; Ulm in Izv. Akad. Nauk Est. SSR 16:403–411, 1967) do not. We also show that under the same hypotheses and computational cost as (Burmeister in Z. Angew. Math. Mech. 52:101–110, 1972; Kornstaedt in Aequ. Math. 13:21–45, 1975; Petzeltova in Comment. Math. Univ. Carol. 21:719–725, 1980; Potra and Ptǎk in Cas. Pest. Mat. 108:333–341, 1983; Ulm in Izv. Akad. Nauk Est. SSR 16:403–411, 1967) finer error sequences can be obtained. Numerical examples are also provided further validating the results.  相似文献   

12.
We present a local as well as a semilocal convergence analysis for Newton’s method for approximating a locally unique solution of a nonlinear equation in a Banach space setting. Our hypotheses involve m-Fréchet-differentiable operators and general Lipschitz-type hypotheses, where m≥2 is a positive integer. The new convergence analysis unifies earlier results; it is more flexible and provides a finer convergence analysis than in earlier studies such as Argyros in J. Comput. Appl. Math. 131:149–159, 2001, Argyros and Hilout in J. Appl. Math. Comput. 29:391–400, 2009, Argyros and Hilout in J. Complex. 28:364–387, 2012, Argyros et al. Numerical Methods for Equations and Its Applications, CRC Press/Taylor & Francis, New York, 2012, Gutiérrez in J. Comput. Appl. Math. 79:131–145, 1997, Ren and Argyros in Appl. Math. Comput. 217:612–621, 2010, Traub and Wozniakowski in J. Assoc. Comput. Mech. 26:250–258, 1979. Numerical examples are presented further validating the theoretical results.  相似文献   

13.
The paper is devoted to the problem of establishing right-convergence of sparse random graphs. This concerns the convergence of the logarithm of number of homomorphisms from graphs or hyper-graphs \(\mathbb{G }_N, N\ge 1\) to some target graph \(W\) . The theory of dense graph convergence, including random dense graphs, is now well understood (Borgs et al. in Ann Math 176:151–219, 2012; Borgs et al. in Adv Math 219:1801–1851, 2008; Chatterjee and Varadhan in Eur J Comb 32:1000–1017, 2011; Lovász and Szegedy in J Comb Theory Ser B 96:933–957, 2006), but its counterpart for sparse random graphs presents some fundamental difficulties. Phrased in the statistical physics terminology, the issue is the existence of the limits of appropriately normalized log-partition functions, also known as free energy limits, for the Gibbs distribution associated with \(W\) . In this paper we prove that the sequence of sparse Erdös-Rényi graphs is right-converging when the tensor product associated with the target graph \(W\) satisfies a certain convexity property. We treat the case of discrete and continuous target graphs \(W\) . The latter case allows us to prove a special case of Talagrand’s recent conjecture [more accurately stated as level III Research Problem 6.7.2 in his recent book (Talagrand in Mean Field Models for Spin Glasses: Volume I: Basic examples. Springer, Berlin, 2010)], concerning the existence of the limit of the measure of a set obtained from \(\mathbb{R }^N\) by intersecting it with linearly in \(N\) many subsets, generated according to some common probability law. Our proof is based on the interpolation technique, introduced first by Guerra and Toninelli (Commun Math Phys 230:71–79, 2002) and developed further in (Abbe and Montanari in On the concentration of the number of solutions of random satisfiability formulas, 2013; Bayati et al. in Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010; Contucci et al. in Antiferromagnetic Potts model on the Erdös-Rényi random graph, 2011; Franz and Leone in J Stat Phys 111(3/4):535–564, 2003; Franz et al. in J Phys A Math Gen 36:10967–10985, 2003; Montanari in IEEE Trans Inf Theory 51(9):3221–3246, 2005; Panchenko and Talagrand in Probab Theory Relat Fields 130:312–336, 2004). Specifically, Bayati et al. (Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010) establishes the right-convergence property for Erdös-Rényi graphs for some special cases of \(W\) . In this paper most of the results in Bayati et al. (Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010) follow as a special case of our main theorem.  相似文献   

14.
Second-order elliptic operators with unbounded coefficients of the form ${Au := -{\rm div}(a\nabla u) + F . \nabla u + Vu}$ in ${L^{p}(\mathbb{R}^{N}) (N \in \mathbb{N}, 1 < p < \infty)}$ are considered, which are the same as in recent papers Metafune et?al. (Z Anal Anwendungen 24:497–521, 2005), Arendt et?al. (J Operator Theory 55:185–211, 2006; J Math Anal Appl 338: 505–517, 2008) and Metafune et?al. (Forum Math 22:583–601, 2010). A new criterion for the m-accretivity and m-sectoriality of A in ${L^{p}(\mathbb{R}^{N})}$ is presented via a certain identity that behaves like a sesquilinear form over L p ×?L p'. It partially improves the results in (Metafune et?al. in Z Anal Anwendungen 24:497–521, 2005) and (Metafune et?al. in Forum Math 22:583–601, 2010) with a different approach. The result naturally extends Kato’s criterion in (Kato in Math Stud 55:253–266, 1981) for the nonnegative selfadjointness to the case of p ≠?2. The simplicity is illustrated with the typical example ${Au = -u\hspace{1pt}'' + x^{3}u\hspace{1pt}' + c |x|^{\gamma}u}$ in ${L^p(\mathbb{R})}$ which is dealt with in (Arendt et?al. in J Operator Theory 55:185–211, 2006; Arendt et?al. in J Math Anal Appl 338: 505–517, 2008).  相似文献   

15.
Diffusive relaxation systems provide a general framework to approximate nonlinear diffusion problems, also in the degenerate case (Aregba-Driollet et al. in Math. Comput. 73(245):63–94, 2004; Boscarino et al. in Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, 2011; Cavalli et al. in SIAM J. Sci. Comput. 34:A137–A160, 2012; SIAM J. Numer. Anal. 45(5):2098–2119, 2007; Naldi and Pareschi in SIAM J. Numer. Anal. 37:1246–1270, 2000; Naldi et al. in Surveys Math. Indust. 10(4):315–343, 2002). Their discretization is usually obtained by explicit schemes in time coupled with a suitable method in space, which inherits the standard stability parabolic constraint. In this paper we combine the effectiveness of the relaxation systems with the computational efficiency and robustness of the implicit approximations, avoiding the need to resolve nonlinear problems and avoiding stability constraints on time step. In particular we consider an implicit scheme for the whole relaxation system except for the nonlinear source term, which is treated though a suitable linearization technique. We give some theoretical stability results in a particular case of linearization and we provide insight on the general case. Several numerical simulations confirm the theoretical results and give evidence of the stability and convergence also in the case of nonlinear degenerate diffusion.  相似文献   

16.
This paper provides effective methods for the polyhedral formulation of impartial finite combinatorial games as lattice games (Guo et al. Oberwolfach Rep 22: 23–26, 2009; Guo and Miller, Adv Appl Math 46:363–378, 2010). Given a rational strategy for a lattice game, a polynomial time algorithm is presented to decide (i) whether a given position is a winning position, and to find a move to a winning position, if not; and (ii) to decide whether two given positions are congruent, in the sense of misère quotient theory (Plambeck, Integers, 5:36, 2005; Plambeck and Siegel, J Combin Theory Ser A, 115: 593–622, 2008). The methods are based on the theory of short rational generating functions (Barvinok and Woods, J Am Math Soc, 16: 957–979, 2003).  相似文献   

17.
The shortest path games are considered in this paper. The transportation of a good in a network has costs and benefits. The problem is to divide the profit of the transportation among the players. Fragnelli et al. (Math Methods Oper Res 52: 251–264, 2000) introduce the class of shortest path games and show it coincides with the class of monotone games. They also give a characterization of the Shapley value on this class of games. In this paper we consider further five characterizations of the Shapley value (Hart and Mas-Colell’s in Econometrica 57:589–614, 1989; Shapley’s in Contributions to the theory of games II, annals of mathematics studies, vol 28. Princeton University Press, Princeton, pp 307–317, 1953; Young’s in Int J Game Theory 14:65–72, 1985, Chun’s in Games Econ Behav 45:119–130, 1989; van den Brink’s in Int J Game Theory 30:309–319, 2001 axiomatizations), and conclude that all the mentioned axiomatizations are valid for the shortest path games. Fragnelli et al. (Math Methods Oper Res 52:251–264, 2000)’s axioms are based on the graph behind the problem, in this paper we do not consider graph specific axioms, we take $TU$ axioms only, that is we consider all shortest path problems and we take the viewpoint of an abstract decision maker who focuses rather on the abstract problem than on the concrete situations.  相似文献   

18.
Recently many authors have studied properties of triangles and the theory of perspective triangles in the Euclidean plane (see Kimberling et al. J Geom Graph 14:1–14, 2010; Kimberling et al. http://faculty.evansville.edu/ck6/encyclopedia/ETC.html, 2012; Moses and Kimberling J Geom Graph 13:15–24, 2009; Moses and Kimberling Forum Geom 11:83–93, 2011; Odehnal Elem Math 61:74–80, 2006; Odehnal Forum Geom 10:35–40, 2010; Odehnal J Geom Graph 15: 45–67, 2011). The aim of this paper is to present a new approach to the construction of points on the Feuerbach hyperbola. Surprisingly, these points can be obtained as centers of perspectivity of a triangle ABC and a certain one-parametric set of triangles ABC′. The presented construction is based on partitions of the triangle’s sides and—in a way—dual to the construction of points on the Kiepert hyperbola. It can also be generalized to spherical triangles. The proofs are based on an affine property of triangles, which amazingly can also be used for the proof of the spherical theorem.  相似文献   

19.
For a computable structure \({\mathcal{A}}\) , there may not be a computable infinitary Scott sentence. When there is a computable infinitary Scott sentence \({\varphi}\) , then the complexity of the index set \({I(\mathcal{A})}\) is bounded by that of \({\varphi}\) . There are results (Ash and Knight in Computable structures and the hyperarithmetical hierarchy. Elsevier, Amsterdam, 2000; Calvert et al. in Algeb Log 45:306–315, 2006; Carson et al. in Trans Am Math Soc 364:5715–5728, 2012; McCoy and Wallbaum in Trans Am Math Soc 364:5729–5734, 2012; Knight and Saraph in Scott sentences for certain groups, pre-print) giving “optimal” Scott sentences for structures of various familiar kinds. These results have been driven by the thesis that the complexity of the index set should match that of an optimal Scott sentence (Ash and Knight in Computable structures and the hyperarithmetical hierarchy. Elsevier, Amsterdam, 2000; Calvert et al. in Algeb Log 45:306–315, 2006; Carson et al. in Trans Am Math Soc 364:5715–5728, 2012; McCoy and Wallbaum in Trans Am Math Soc 364:5729–5734, 2012). In this note, it is shown that the thesis does not always hold. For a certain subgroup of \({\mathbb{Q}}\) , there is no computable d- \({\Sigma_2}\) Scott sentence, even though (as shown in Ash and Knight in Scott sentences for certain groups, pre-print) the index set is d- \({\Sigma^0_2}\) .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号