首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
修乃华 《计算数学》1994,16(4):406-417
一类改进的非凸二次规划有效集方法修乃华(河北师范学院数学系)ACLASSOFIMPROVEDACTIVESETMETHODSFORNONCONVEXQUADRATICPROGRAMMINGPROBLEM¥XiuNai-hua(Dept.ofMath....  相似文献   

3.
求解凸二次规划问题的不可行内点算法   总被引:1,自引:0,他引:1       下载免费PDF全文
该文对一般的凸二次规划问题,给出了一个不可行内点算法,并证明了该算法经过犗(狀2犔)步迭代之后,要么得到问题的一个近似最优解,要么说明该问题在某个较大的区域内无解.  相似文献   

4.
针对共轭梯度法求解无约束二次凸规划时,在构造共轭方向上的局限性,对共轭梯度法进行了改进.给出了构造共轭方向的新方法,利用数学归纳法对新方法进行了证明.同时还给出了改进共轭梯度法在应用时的基本计算过程,并对方法的收敛性进行了证明.通过实例求解,说明了在求解二次无约束凸规划时,该方法相比共轭梯度法具有一定的优势.  相似文献   

5.
求解凸二次规划问题的势下降内点算法   总被引:11,自引:0,他引:11  
1 引 言二次规划问题的求解是数学规划和工业应用等领域的一个重要课题 ,同时也是解一般非线性规划问题的序列二次规划算法的关键 .求解二次规划问题的早期技术是利用线性规划问题的单纯形方法求解二次规划问题的 KKT最优性必要条件[1 ] .这类算法比较直观 ,但在处理不等式约束时 ,松弛变量的引进很容易导致求解过程的明显减慢 .有效集策略是求解二次规划问题的另一类主要技术 .这类方法一般都是稳定的 ,但随着问题中大量不等式约束的出现 ,其收敛速度将越来越低[2 ] .简约空间技术将所求问题的 Hessian阵投影到自由变量所在的子空间中 …  相似文献   

6.
凸二次交叉规划的等价形式   总被引:1,自引:0,他引:1  
丁梅  马建华 《经济数学》2002,19(3):77-81
利用参数规划逆问题考虑凸二次交叉规划与多目标规划的关系 ,把交叉规划转变为同变量规划组 ,再把同变量规划组变为多目标规划 ,证明了凸二次交叉规划的均衡解与多目标规划的最优解的关系。  相似文献   

7.
本文提出一类基于DC分解的非凸二次规划问题SDP松弛方法,并通过求解一个二阶锥问题得到原问题的近似最优解.我们首先对非凸二次目标函数进行DC分解,然后利用线性下逼近得到一个凸二次松弛问题,而最优的DC分解可通过求解一个SDP问题得到.数值试验表明,基于DC分解的SDP近似解平均优于经典SDP松弛和随机化方法产生的近似解。  相似文献   

8.
求非凸二次约束二次规划问题全局解的线性化方法   总被引:1,自引:0,他引:1  
1引言 考虑如下非凸二次规划的全局优化问题: (QP):{min xTQox doTx,s.t.xTQix ditx≤bi,i=1,…,m,x∈S={x∈Rn:l≤x≤u}, 其中Qo,Qi是n阶实对称矩阵,do,di∈Rn,bi∈R,i=1,…,m;l=(l1,…,ln)T,u=(u1,…,un)T .  相似文献   

9.
关于宏观经济的凸二次规划模型   总被引:2,自引:0,他引:2  
本文运用凸二次规划理论,通过引入价格变量建立观经济的凸二次规划模型.并指出在社会主义市场经济中企业、产业、国家可以同时达到最优.  相似文献   

10.
本文研究了凸二次规划的一种光滑算法,将规划的对应中心线条件改造成一个非线性方程组,对其应用牛顿法及其变形形式,并且证明了算法的全局收敛性.  相似文献   

11.
单锋 《大学数学》2002,18(1):48-51
本文给出了无界域上不定二次规划一个算法 ,该算法将不定二次规划转化为一系列凸二次规划 ,并证明了算法的收敛性 .  相似文献   

12.
本文利用方差和绝对离差这两个风险度量指标 ,分别建立了证券组合投资的动态模型 ,并给出其解法 .从而使模型更符合实际 ,有利于实施最佳的组合投资的策略 .  相似文献   

13.
We describe the application of proximal point methods to the linear programming problem. Two basic methods are discussed. The first, which has been investigated by Mangasarian and others, is essentially the well-known method of multipliers. This approach gives rise at each iteration to a weakly convex quadratic program which may be solved inexactly using a point-SOR technique. The second approach is based on the proximal method of multipliers, originally proposed by Rockafellar, for which the quadratic program at each iteration is strongly convex. A number of techniques are used to solve this subproblem, the most promising of which appears to be a two-metric gradient-projection approach. Convergence results are given, and some numerical experience is reported.This research was supported by National Science Foundation, Grant Nos. ASC-87-14009 and DMS-86-19903, and by Air Force Office of Scientific Research, Grant No. AFOSR-ISSA-87-0092. Part of this work was performed at Argonne National Laboratory. Computation was partly performed at the Pittsburgh Supercomputer Center under NSF Grant No. DMS-88-0033P and at the Argonne Advanced Computing Research Facility, whose support is gratefully acknowledged. The author thanks Olvi Mangasarian and Renato DeLeone for helpful discussions, and Jorge Moré for his valuable advice on the algorithms discussed in Section 3. The contributions of a referee, who provided helpful comments on an earlier version of this paper, are also acknowledged.  相似文献   

14.
The proximal point method for convex optimization has been extended recently through the use of generalized distances (e.g., Bregman distances) instead of the Euclidean one. One advantage of these extensions is the possibility of eliminating certain constraints (mainly positivity) from the subproblems, transforming an inequality constrained problem into a sequence of unconstrained or equality constrained problems. We consider here methods obtained using a certain class of Bregman functions applied to convex quadratic (including linear) programming, which are of the interior-point type. We prove that the limit of the sequence generated by the method lies in the relative interior of the solution set, and furthermore is the closest optimal solution to the initial point, in the sense of the Bregman distance. These results do not hold for the standard proximal point method, i.e., when the square of the Euclidean norm is used as the Bregman distance.The research leading to this paper was partially supported by CNPq Grant 301280/86.We thank two anonymous referees whose comments and suggestions allowed us to improve our results in a significant way.  相似文献   

15.
We describe a polynomial-size conic quadratic reformulation for a machine-job assignment problem with separable convex cost. Because the conic strengthening is based only on the objective of the problem, it can also be applied to other problems with similar cost functions. Computational results demonstrate the effectiveness of the conic reformulation.  相似文献   

16.
Murty's algorithm for the linear complementarity problem is generalized to solve the optimality conditions for linear and convex quadratic programming problems with both equality and inequality constraints. An implementation is suggested which provides both efficiency and tight error control. Numerical experiments as well as field tests in various applications show favorable results.The author thanks K. G. Murty for his encouragement and helpful comments.  相似文献   

17.
An algorithm is presented which solves bounded quadratic optimization problems with n variables and one linear constraint in at most O(n) steps. The algorithm is based on a parametric approach combined with well-known ideas for constructing efficient algorithms. It improves an O(n log n) algorithm which has been developed for a more restricted case of the problem.  相似文献   

18.
We propose a method for finding analytic center of a convex feasible region whose boundaries are defined by quadratic functions. The algorithm starts from an arbitrary initial point and approaches to the desired center by simultaneously reducing infeasibility or slackness of all constraints. A partial Newton step is taken at each iteration.Research supported in part by the ONR under grant N00014-87-K-0214 and by the NSF under grant CCR-8810107.Research supported in part by the NSF under grant ECS-8721709.  相似文献   

19.
In this paper we consider optimization problems defined by a quadratic objective function and a finite number of quadratic inequality constraints. Given that the objective function is bounded over the feasible set, we present a comprehensive study of the conditions under which the optimal solution set is nonempty, thus extending the so-called Frank-Wolfe theorem. In particular, we first prove a general continuity result for the solution set defined by a system of convex quadratic inequalities. This result implies immediately that the optimal solution set of the aforementioned problem is nonempty when all the quadratic functions involved are convex. In the absence of the convexity of the objective function, we give examples showing that the optimal solution set may be empty either when there are two or more convex quadratic constraints, or when the Hessian of the objective function has two or more negative eigenvalues. In the case when there exists only one convex quadratic inequality constraint (together with other linear constraints), or when the constraint functions are all convex quadratic and the objective function is quasi-convex (thus allowing one negative eigenvalue in its Hessian matrix), we prove that the optimal solution set is nonempty.  相似文献   

20.
本文给出确定线性约束0-1二次规划问题最优值下界的方法,该方法结合McBride和Yormark的思想和总体优化中定下界的方法,证明了所定的界较McBride和Yormark的要好.求解线性约束0-1二次规划问题的分支定界算法可以利用本文的定界技术.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号