首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Artocarpin isolated from an agricultural plant Artocarpus communis has shows anti‐inflammation and anticancer activities. In this study, we utilized recombinant human UDP‐glucuronosyltransferasesupersomes (UGTs) and human liver microsomes to explore its inhibitory effect on UGTs and cytochrome p450 enzymes (CYPs). Chemical inhibition studies and screening assays with recombinant human CYPs were used to identify if CYP isoform is involved in artocarpin metabolism. Artocarpin showed strong inhibition against UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, CYP2C8 and CYP3A4. In particular, artocarpin exhibited competitive inhibition against CYP3A4 and noncompetitive inhibition against UGT1A3 and UGT1A7. The half inhibition concentration values for CYP3A4, UGT1A3 and UGT1A7 were 4.67, 3.82 and 4.82 μm , and the inhibition kinetic parameters for them were 0.78, 2.67 and 3.14 μm , respectively. After artocarpin was incubated in human liver microsomes and determined by HPLC, we observed its main metabolites (M1 and M2). In addition, we proved that CYP2D6 played the key role in the biotransformation of artocarpin in human liver microsomes. The result of molecular docking further confirmed that artocarpin interacted with CYP2D6, CYP2C8 and CYP3A4 through hydrogen bonds. This study provided preliminary results for further research on artocarpin or artocarpin‐containing herbs.  相似文献   

3.
Corydaline is a pharmacologically active isoquinoline alkaloid isolated from Corydalis tubers. It exhibits the antiacetylcholinesterase, antiallergic, antinociceptive, and gastric emptying activities. The purposes of this study were to establish in vitro metabolic pathways of corydaline in human liver microsomes and hepatocytes by identification of their metabolites using liquid chromatography-ion trap mass spectrometry. Human liver microsomal incubation of corydaline in the presence of an NADPH-generating system resulted in the formation of nine metabolites, namely, four O-desmethylcorydaline [M1 (yuanhunine), M2 (9-O-desmethylcorydaline), M3 (isocorybulbine), and M4 (corybulbine)], three di-O-desmethylcorydaline [M5 (9,10-di-O-desmethylcorydaline), M6 (2,10-di-O-desmethylcorydaline), and M7 (3,10-di-O-desmethylcorydaline)], M8 (hydroxyyuanhunine), and M9 (hydroxycorydaline). Incubation of corydaline in human hepatocytes produced four metabolites including M1, M5, M6, and M9. O-Demethylation and hydroxylation were the major metabolic pathways for the metabolism of corydaline in human liver microsomes and hepatocytes.  相似文献   

4.
Celastrol, a quinone methide triterpene isolated from Tripterygium wilfordii Hook F., has various biochemical and pharmacological activities, and is now being developed as a promising anti-tumor agent. Inhibitory activity of compounds towards UDP-glucuronosyltransferase (UGT) is an important cause of clinical drug-drug interactions and herb-drug interactions. The aim of the present study is to investigate the inhibition of celastrol towards two important UDP-glucuronosyltransferase (UGT) isoforms UGT1A6 and UGT2B7. Recombinant UGT isoforms and non-specific substrate 4-methylumbelliferone (4-MU) were used. The results showed that celastrol strongly inhibited the UGT1A6 and 2B7-mediated 4-MU glucuronidation reaction, with 0.9 ± 0.1% and 1.8 ± 0.2% residual 4-MU glucuronidation activity at 100 μM of celastrol, respectively. Furthermore, inhibition kinetic study (Dixon plot and Lineweaver-Burk plot) demonstrated that celastrol noncompetitively inhibited the UGT1A1-mediated 4-MU glucuronidation, and competitively inhibited UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameters (Ki) were calculated to be 0.49 μM and 0.045 μM for UGT1A6 and UGT2B7, respectively. At the therapeutic concentration of celastrol for anti-tumor utilization, the possibility of celastrol-drug interaction and celastrol-containing herbs-drug interaction were strongly indicated. However, given the complicated nature of herbs, these results should be viewed with more caution.  相似文献   

5.
Gossypol, the polyphenolic constituent isolated from cottonseeds, has been used as a male antifertility drug for a long time, and has been demonstrated to exhibit excellent anti-tumor activity towards multiple cancer types. The toxic effects of gossypol limit its clinical utilization, and enzyme inhibition is an important facet of this. In the present study, in vitro human liver microsomal incubation system supplemented with UDPGA was used to investigate the inhibition of gossypol towards UGT1A1, 1A9 and 2B7-mediated metabolism of xenobiotics and endogenous substances. Estradiol, the probe substrate of UGT1A1, was selected as representative endogenous substance. Propofol (a probe substrate of UGT1A9) and 3'-azido-3'-deoxythimidine (AZT, a probe substrate of UGT2B7) were employed as representative xenobiotics. The results showed that gossypol noncompetitively inhibits UGT-mediated estradiol-3-glucuronidation and propofol O-glucuronidation, and the inhibition kinetic parameters (K(i)) were calculated to be 34.2 and 16.4 μM, respectively. Gossypol was demonstrated to exhibit competitive inhibition towards UGT-mediated AZT glucuronidation, and the inhibition kinetic parameter (K(i)) was determined to be 14.0 μM. All these results indicated that gossypol might induce metabolic disorders of endogenous substances and alteration of metabolic behaviour of co-administered xenobiotics through inhibition of UGTs' activity.  相似文献   

6.
trans-Resveratrol, a phenolic phytoalexin occurring in grapes, wine, peanuts, and cranberries, has been reported to both have anticarcinogenic, antioxidative, phytoestrogenic, and cardioprotective activities, and to be a weak inhibitor of cytochrome P450 (CYP)3A4, which might have significance for drug-drug interactions. Since trans-resveratrol is rapidly converted in vivo to primarily trans-resveratrol-3-sulfate, a rapid, selective, and sensitive method using liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed to investigate human cytochrome P450 inhibition by trans-resveratrol-3-sulfate. Effects of trans-resveratrol and trans-resveratrol-3-sulfate on the metabolism of selective cytochrome P450 substrates (CYP1A2/ethoxyresorufin, CYP2C9/diclofenac, CYP2C19/(S)-mephenytoin, CYP2D6/bufuralol, CYP3A4/testosterone) were monitored using cDNA-expressed human recombinant isozymes. For method validation, LC/MS/MS was used to measure the inhibition of various cytochrome P450 isozymes by different concentrations (0-50 microM) of known selective inhibitors. IC(50) values of 3.2, 1.4, 8.9, 0.2, and 0.3 microM were obtained for the standard isozyme inhibitors CYP1A2/furafylline, CYP2C9/sulfaphenazole, CYP2C19/tranylcypromine, CYP2D6/quinidine, and CYP3A4/ketoconazole, respectively, which were in good agreement with literature values. trans-Resveratrol showed IC(50) values of 11.6 microM for CYP2C19 and 1.1 microM for CYP3A4, but the IC(50) values exceeded 50 microM for all the other CYP isozymes, which indicated no inhibition. No enzyme inhibition was observed for trans-resveratrol-3-sulfate. Our results indicate that trans-resveratrol is a marginal inhibitor of CYP3A4 and a weak inhibitor of CYP2C19, but its major metabolite trans-resveratrol-3-sulfate is not an inhibitor of any of the cytochrome P450 isozymes investigated.  相似文献   

7.
The aim of this study was to investigate the direct inhibitory effects of Re Du Ning Injection (RDN) and its active compounds on the major cytochrome P450 enzyme (CYP) isoforms (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) of human liver microsomes by ‘a cocktail method’. The activity of each CYP isform was represented as the formation rate of the specific metabolite from relevant substrate. Then a sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to simultaneously analyze the seven metabolites. RDN (0.035–2.26 mg/mL) showed a strong inhibitiory effect on CYP2C8, followed by CYP2C9, CYP2B6, CYP2C19, CYP1A2 and CYP3A4. The IC50 value for each enzyme was 0.19, 0.66, 0.72, 1.27, 1.66 and 2.13 mg/mL, respectively. RDN competitively inhibited the activities of CYP1A2 (K i = 1.22 mg/mL), CYP2B6 (K i = 0.65 mg/mL) and CYP3A4 (K i = 0.88 mg/mL); it also exhibited mixed inhibition of CYP2C8, CYP2C9 and CYP2C19 with a K i value of 0.26, 0.64 and 0.82 mg/mL, respectively. However, the activity of CYP2D6 was not significantly inhibited even by 2.26 mg/mL RDN. Moreover, the data of nine active compounds on the CYPs showed that cryptochlorogenin acid, sochlorogenic acid B and sochlorogenic acid C were the major contributors to the inhibitory effect of RDN on CYP2C8, while the inhibitory effect of RDN on CYP2C9 might be caused by sochlorogenic acid A and sochlorogenic acid C. Moreover, neochlorogenic acid might be the major contributor to the inhibitory effect on CYP2B6. All of the findings suggested that drug–drug interactions may occur and great caution should be taken when RDN is combined with drugs metabolized by these CYPs.  相似文献   

8.
The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE) on human recombinant cytochrome P450 (CYP) enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC(50)) values of 0.78 μg/mL and 0.636 μg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC(50) of 39 μg/mL, and weak inhibition was detected for CYP2C19. The IC(50) of CYP2C19 could not be determined, however, because inhibition was <50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6), ketoconazole (CYP3A4), tranylcypromine (CYP2C19) and furafylline (CYP1A2) were ACCESSused as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2.  相似文献   

9.
Danhong Injection (DHI) as a Chinese patent medicine is mainly used to treat ischemic encephalopathy and coronary heart disease in combination with other chemotherapy. However, the information on DHI's potential drug interactions is limited. The goal of this work was to examine the potential P450‐mediated metabolism drug interaction arising from DHI and its active components. The results showed that DHI inhibited CYP2C19, CYP2D6, CYP3A4, CYP2E1 and CYP2C9 with IC50 values of 1.26, 1.42, 1.63, 1.10 and 1.67% (v/v), respectively. Danshensu and rosmarinic acid inhibited CYP2E1 and CYP2C9 with IC50 values of 36.63 and 75.76 μm , and 34.42 and 76.89 μm , respectively. Salvianolic acid A and B inhibited CYP2D6, CYP2E1 and CYP2C9 with IC50 values of 33.79, 21.64 and 31.94 μm , and 45.47, 13.52 and 24.15 μm , respectively. The study provides some useful information for safe and effective use of DHI in clinical practice.  相似文献   

10.
Inhibition of UDP-glucuronosyltransferase (UGT) isoforms can result in severe clinical results, including clinical drug-drug interactions (DDI) and metabolic disorders of endogenous substances. The present study aims to investigate the inhibition of demethylzeylasteral (an important active component isolated from Tripterygium wilfordii Hook F.) towards three important UGT isoforms UGT1A6, UGT1A9 and UGT2B7. The results showed that 100 μM of demethylzeylasteral exhibited strong inhibition towards UGT1A6 and UGT2B7, with negligible influence towards UGT1A9. Furthermore, Dixon and Lineweaver-Burk plots showed the inhibition of UGT1A6 and UGT2B7 by demethylzeylasteral was best fit to competitive inhibition, and the inhibition kinetic parameters (Ki) were calculated to be 0.6 μM and 17.3 μM for UGT1A6 and UGT2B7, respectively. This kind of inhibitory effect need much attention when demethylzeylasteral and demethylzeyasteral-containing herbs (e.g., Tripterygium wilfordii Hook F.) were co-administered with the drugs mainly undergoing UGT1A6, UGT2B7-catalyzed metabolism. However, when extrapolating the in vivo clinical results using our present in vitro data, many complex factors might affect final results, including the contribution of UGT1A6 and UGT2B7 to the metabolism of compounds, and the herbal or patients' factors affecting the in vivo concentration of demethylzeylasteral.  相似文献   

11.
Pinostrobin (PI, 5‐hydroxy‐7‐methoxyflavanone) is a natural flavonoid known for its rich pharmacological activities. The objective of this study was to identify the human liver cytochrome P450 (CYP450) isoenzymes involved in the metabolism of PI. A single hydoxylated metabolite was obtained from PI after an incubation with pooled human liver microsomes (HLMs). The relative contributions of different CYP450s were evaluated using CYP450‐selective inhibitors in HLMs and recombinant human CYP450 enzymes, and the results revealed the major involvement of CYP1A2, CYP2C9 and CYP2E1 in PI metabolism. We also evaluated the ability of PI to inhibit and induce human cytochrome P450 enzymes in vitro . High‐performance liquid chromatography and liquid chromatography–tandem mass spectrometry analytical techniques were used to estimate the enzymatic activities of seven drug‐metabolizing CYP450 isozymes in vitro . In HLMs, PI did not inhibit CYP 1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 or CYP3A4 (IC50 > 100 μm ). In the induction studies, PI had minimal effects on CYP1A2, CYP2B6and CYP3A4 activity. Based on these results, PI would not be expected to cause clinically significant CYP450 inhibition or induction.  相似文献   

12.
The early detection of potential drug-drug interactions is an important issue of drug discovery that has led to the development of high-throughput screening (HTS) methods for potential drug interactions. We developed a HTS method for potential interactions of inhibitory drugs for nine human P450 enzymes using cocktail incubation and tandem mass spectrometry in vitro. This new method involves incubation of two cocktail doses and single cassette analysis. The two cocktail doses in vitro were developed to minimize solvent effects and mutual drug interactions among substrates: cocktail A was composed of phenacetin for CYP1A2, coumarin for CYP2A6, paclitaxel for CYP2C8, S-mephenytoin for CYP2C19, dextromethorphan for CYP2D6, and midazolam for CYP3A4; and cocktail B was composed of three substrates including bupropion for CYP2B6, tolbutamide for CYP2C9, and chlorzoxazone for CYP2E1. In the incubation study of these cocktails, the reaction mixtures were pooled and simultaneously analyzed using liquid chromatography/tandem mass spectrometry employing a fast gradient. The method was validated by comparing the inhibition data obtained from the incubation of each individual probe substrate alone with data from the new method. The IC50 value of each inhibitor in the cocktail agreed well with that of the individual probe drug as well as with values previously reported in the literature. As a HTS method for potential interactions of the inhibition of these nine P450 enzymes, this new method will be useful in the drug discovery process and for the mechanistic understanding of drug interactions.  相似文献   

13.
14.
The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.  相似文献   

15.
A sensitive and high‐throughput LC‐MS/MS method was established and validated for the simultaneous quantification of seven probe substrate‐derived metabolites (cocktail assay) for assessing the in vitro inhibition of cytochrome P450 (CYP) enzymes in pooled human liver microsomes. The metabolites acetaminophen (CYP1A2), hydroxy‐bupropion (CYP2B6), n‐desethyl‐amodiaquine (CYP2C8), 4′‐hydroxy‐diclofenac (CYP2C9), 4′‐hydroxy‐mephenytoin (CYP2C19), dextrorphan (CYP2D6) and 1′‐hydroxy‐midazolam (CYP3A4/5), together with the internal standard verapamil, were eluted on an Agilent 1200 series liquid chromatograph in <7 min. All metabolites were detected by an Agilent 6410B tandem mass spectrometer. The concentration of each probe substrate was selected by substrate inhibition assay that reduced potential substrate interactions. CYP inhibition of seven well‐known inhibitors was confirmed by comparing a single probe substrate assay with cocktail assay. The IC50 values of these inhibitors determined on this cocktail assay were highly correlated (R2 > 0.99 for each individual probe substrate) with those on single assay. The method was selective and showed good accuracy (85.89–113.35%) and between‐day (RSD <13.95%) and within‐day (RSD <9.90%) precision. The sample incubation extracts were stable at 25 °C for 48 h and after three freeze–thaw cycles. This seven‐CYP inhibition cocktail assay significantly increased the efficiency of accurately assessing compounds’ potential inhibition of the seven major CYPs in drug development settings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A generic method employing ultrafast liquid chromatography with tandem mass spectrometry (LC/MS/MS) was developed and employed for routine screening of drug candidates for inhibition of five major human cytochrome p450 (CYP) isozymes, CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2. The method utilized a monolithic silica rod column to allow fast flow rates to significantly reduce chromatographic run time. The major metabolites of six CYP-specific probe substrates for the five p450 isoforms were monitored and quantified to determine IC(50) values of five drug compounds against each p450 isozyme. Human liver microsomal incubation samples at each test compound concentration were combined and analyzed simultaneously by the LC/MS/MS method. Each pooled sample containing six substrates and an internal standard was separated and detected in only 24 seconds. The combination of ultrafast chromatography and sample pooling techniques has significantly increased sample throughput and shortened assay turnaround time, allowing a large number of compounds to be screened rapidly for potential p450 inhibitory activity, to aid in compound selection and optimization in drug discovery.  相似文献   

17.
蒋华麟  谭相石 《化学进展》2009,21(5):911-918
由于人肝细胞色素P450 2C亚家族与临床药物代谢的密切关系,其研究已引起人们的广泛关注。本文综述了四种人肝细胞色素P450 2C,着重综述了其中的三种:CYP2C9,CYP2C8,CYP2C19的研究进展。评述了CYP2C9,CYP2C8和CYP2C19的某些氨基酸残基在催化过程中的作用,这三种酶的基因多态在不同人种中的分布及药物代谢的差异,以及它们与用药的特异性及某些疾病的易感性的联系,介绍了目前提出的CYP2C8的底物药效团模型,最后总结了CYP2C9,CYP2C8,CYP2C19,CYP2C18的主要特性。  相似文献   

18.
Prost F  Thormann W 《Electrophoresis》2003,24(15):2577-2587
Capillary electrophoresis (CE) with multiwavelength absorbance detection is demonstrated to be an effective tool for the assessment of in vitro drug metabolism studies using microsomes containing single human cytochrome P450 enzymes (CYPs) expressed in baculovirus-infected insect cells (Supersomes). Mephenytoin (MEPH), dextromethorphan, diclofenac, caffeine, and methadone (MET) were successfully applied as test substrates for CYP2C19, CYP2D6*1, CYP2C9*1, CYP1A2, and CYP3A4, respectively. For each system, the CE-based assay could be shown to permit the simultaneous analysis of the parent drug and its targeted metabolite. Using a chiral micellar electrokinetic capillary chromatography assay, the aromatic hydroxylation of MEPH catalyzed by CYP2C19 could thereby be confirmed to be highly stereoselective, an aspect that is in agreement with data obtained via urinary analysis after intake of racemic MEPH by extensive metabolizer phenotypes. The MET to 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) conversion was investigated with a chiral zone electrophoresis assay. Incubation of racemic and nonracemic MET with CYP3A4 revealed no stereoselectivity for the transformation to EDDP, whereas no EDDP formation was observed with CYP1A2. CYP2C9 and CYP2C19 provided enhanced formation of R-EDDP and CYP2D6 incubation resulted in the preferential conversion to S-EDDP. Investigations using racemic MET and human liver microsomes revealed a modest stereoselectivity with an R/S EDDP ratio < 1 which is similar to the in vivo findings in urine.  相似文献   

19.

In the present work, molecular docking of the chalcone analogues with receptor EGFR carried out using erlotinib as reference drug is reported. About 15 chalcone analogues were analyzed CHL(1–15). Molecules CHL2, CHL3, CHL9, CHL11, and CHL15 found strong affinity for receptor EGFR exhibiting binding energies ??7.7 kcal/mol, ??7.5 kcal/mol, ??7.6 kcal/mol, ??7.9 kcal/mol, and ??8.1 kcal/mol, respectively, when erlotinib a reference drug exhibits binding energy ??7.6 kcal/mol. Toxicity for molecules was assessed against the cytochromes P450 (CYP) and P-gp using Swiss ADMET. Molecule CHL9 could be a suitable lead compound inhibitor to CYP1A2 followed by CHL2 inhibitor of CYP1A2 and CYP2C9 and CHL15 with a most stable binding affinity of ??8.1 kcal/mol, inhibiting CYP1A2, CYP2C19, and CYP2D6. CHL3 has a binding affinity of ??7.5 kcal/mol, inhibiting all the 05 CYP enzymes (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4). CHL11 has a binding affinity of ??7.9 kcal/mol, inhibiting CYP1A2, CYP2C19, and CYP2C9. Considering inhibition of CYP family enzymes by molecules, further here we have perform the enrichment analysis to these CYP family enzymes and reported the metabolic pathways which were probably affected by inhibition of these enzymes using EnrichR online enrichment analysis server. The current predictions over these 15 chalcone derivatives will be needed to further investigate in vivo and in vitro conditions to identify the optimum therapeutic efficacy and least toxicity.

  相似文献   

20.
Glucuronidation is a Phase 2 metabolic pathway responsible for the metabolism and excretion of testosterone to a conjugate testosterone glucuronide. Bioavailability and the rate of anabolic steroid testosterone metabolism can be affected upon UGT glucuronidation enzyme alteration. However, there is a lack of information about the in vitro potential assessment of UGT2B17 inhibition by salicylic acid. The purpose of this study is to investigate if UGT2B17 enzyme activity is inhibited by salicylic acid. A UGT2B17 assay was developed and validated by HPLC using a C18 reversed phase column (SUPELCO 25 cm × 4.6 mm, 5 μm) at 246 nm using a gradient elution mobile phase system: (A) phosphate buffer (0.01 M) at pH = 3.8, (B) HPLC grade acetonitrile and (C) HPLC grade methanol. The UGT2B17 metabolite (testosterone glucuronide) was quantified using human UGT2B17 supersomes by a validated HPLC method. The type of inhibition was determined by Lineweaver–Burk plots. These were constructed from the in vitro inhibition of salicylic acid at different concentration levels. The UGT2B17 assay showed good linearity (R2 > 0.99), acceptable recovery and accuracy (80–120%), good reproducibility and acceptable inter and intra-assay precision (<15%), low detection (6.42 and 2.76 μM) and quantitation limit values (19.46 and 8.38 μM) for testosterone and testosterone glucuronide respectively, according to ICH guidelines. Testosterone and testosterone glucuronide were found to be stable up to 72 h in normal laboratory conditions. Our investigational study showed that salicylic acid uncompetitively inhibited UGT2B17 enzyme activity. Thus, drugs that are substrates for the UGT2B17 enzyme have negligible potential effect of causing interaction with salicylic acid in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号