首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction.  相似文献   

2.
We consider dynamical systems from mechanics for which, due to some non-smooth friction effects, Oseledets' Multiplicative Ergodic Theorem cannot be applied canonically to define Lyapunov exponents. For general non-smooth systems which fit into a natural formal framework, we construct a suitable cocycle which lives on a good invariant set of full Lebesgue measure. Afterwards, this construction is applied to investigate a pendulum with dry friction, described through the equation . The Lyapunov exponents obtained by our construction show a good agreement with the dynamical behaviour of the system, and since we will prove that these Lyapunov exponents are always non-positive, we conclude that the system does not show chaotic behaviour.  相似文献   

3.
We propose a new friction model based on the well known LuGre friction model that can accurately describe the nature of friction force in the gross sliding regime. The modification is based on the responses observed from a single degree-of-freedom friction-induced vibration system. Numerical analysis shows that the friction curve in the gross sliding regime can only show counter clockwise hysteretic loops without violating other essential features. We then develop a new friction model by modifying the LuGre friction model that can describe both clockwise as well as counter clockwise hysteretic loops in the pure sliding domain.  相似文献   

4.
Nonlinear Dynamics - The dynamics of a pendulum cable with a special constitutive law subjected to a time-dependent velocity is investigated. The Coulomb friction between the cable of pendulum and...  相似文献   

5.
Experiments show that silts and silty soils exhibit contraction followed by dilation during shearing and the slope of failure line decreases at large strains, termed as phase transformation behaviour. This paper is to develop a new micromechanical stress-strain model that accounts for the phase transformation behaviour by explicitly employing the phase transformation line and its related friction angles. The overall strain includes plastic sliding and plastic compression among grains. The internal-friction angle at the phase transformation state and the void state variable are employed to describe the phase transformation behaviour. The model is examined by simulating undrained and drained triaxial compression tests performed on Pitea silts. The local stress-strain behaviour for contact planes is also investigated.  相似文献   

6.
An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.  相似文献   

7.
The present article addresses the quantification of damping in a parametric pendulum, with a view on further applications in the design of energy harvesting devices. Detailed new experimental data is obtained for such purpose, and a novel mathematical model is presented. Linear and quadratic viscous damping and also dry friction are taken into account. To introduce the dry friction component, the pendulum axis is mounted on ball bearings. This is considered as a very realistic situation of a harvester. Damping parameters are determined by minimizing the difference between numerical and experimental time histories. It is shown that the damping model here presented is more adequate to replicate experiments than commonly used linear models, which consider only a linear viscous damping term characterized by means of free decay tests. It is also pointed that linear models are not adequate for refined studies, since they can lead to erroneous predictions of rotation zones, and consequently to wrong considerations in the design of pendulum harvesters.  相似文献   

8.
田鑫  戈新生 《力学与实践》2015,37(3):361-366
3D 刚体摆是研究地球静止轨道航天器的一个力学简化模型, 它绕一个固定、无摩擦的支点旋转, 具有3 个转动自由度. 文章给出基于修正型罗德里格斯(Rodrigues) 参数描述的3D 刚体摆的姿态动力学方程, 针对3D 刚体摆姿态和角速度稳定的非线性控制设计问题, 基于无源性控制理论利用能量法设计了3D 刚体摆的系统控制器, 并证明了系统满足无源性. 构造了系统的李雅普诺夫(Lyapunov) 函数, 利用能量法设计出3D 刚体摆的姿态控制律, 并由拉萨尔(LaSalle) 不变集原理证明了该控制律的渐近稳定性. 仿真实验给出了3D 刚体摆在倒立平衡位置的姿态和角速度的渐近稳定性, 仿真实验结果表明基于能量方法的3D 刚体摆姿态控制是有效的.  相似文献   

9.
A dynamic model of a controlled physical pendulum is considered. The Pontryagin method of searching for the periodic solutions to near-Hamiltonian systems is used to formulate a programmed law of pendulum oscillations such that the test modes of oscillations become steady and orbitally stable. An approach to identify the friction parameters in the hinge of the pendulum is proposed for the case of the active motor mode. This approach is based on the data available about the integral characteristics of motion. The motion of the system under consideration is numerically simulated.  相似文献   

10.
为研究不同因素对粤东高烈度地区双曲面摩擦摆支座高速公路典型桥梁工程地震响应的影响,选取潮安韩江特大桥主桥(55+4×90+55)m为研究对象,该桥所有墩梁之间均采用双曲面摩擦摆支座。采用ANSYS有限元软件建立全桥模型,基于时程分析法研究了多种因素下桥梁结构的地震响应。研究表明,在纵桥向地震动激励下,桩土的相互作用对各桥墩墩底地震响应影响显著;栓钉全部剪断比栓钉全部不剪断的各桥墩墩底弯矩和剪力分布更均匀,桥墩上的固定支座栓钉不剪断将会增加该桥墩的弯矩、剪力以及支座剪力,但对其他桥墩的影响较小;该研究成果可应用于带栓钉的摩擦摆支座桥梁的地震响应分析。  相似文献   

11.
A dicone moving on a pair of cylindrical rails can be considered as a simplified model of a railway wheelset. Taking into account the non-linear friction laws of rolling contact, the equations of motion for this non-linear mechanical system result in a set of differential-algebraic equations. Previous simulations performed with the differential-algebraic solver DASSL, [2], and experiments, [7], indicated non-linear phenomena such as limit-cycles, bifurcations as well as chaotic behaviour. In this paper the non-linear phenomena are investigated in more detail with the aid of special in-house software and the path-following algorithm PATH [10]. We apply Poincaré sections and Poincaré maps to describe the structure of periodic, quasiperiodic and chaotic motions. The analyses show that part of the chaotic behaviour of the non-linear system can be fully understood as a non-linear iterative process. The resulting stretching and folding processes are illustrated by series of Poincaré sections.  相似文献   

12.
We consider the low energy dynamics of the double pendulum. Low energy implies energies close to the critical value required to make the outer pendulum rotate. All the known interesting results for the double pendulum are at high energies, that is, energies higher than that required to make both pendulums rotate. We show that interesting behavior can occur at low energies as well by which we mean energies just sufficient to make the outer pendulum rotate. A harmonic balance and the Lindstedt–Poincare analysis at the low energies establish that at small, but finite amplitude; the two normal modes behave differently. While the frequency of the “in-phase” mode is almost unchanged with increasing amplitude, the frequency of the “out-of-phase” mode drops sharply. Numerical analysis verifies this analytic result and since the perturbation theory indicates a mode softening for the out-of-phase mode at a critical amplitude, we did a careful numerical analysis of the low energy region just above the threshold for onset of rotation for the outlying pendulum. We find chaotic behavior, but the chaos is a strong function of the initial condition.  相似文献   

13.
The problem of parametric control of plane motions of a two-mass pendulum (swing) is considered. The swing model is a weightless rod with two lumped masses one of which is fixed on the rod and the other slides along it within bounded limits. The control is the distance from the suspension point to the moving point. The proposed control law of swing excitation and damping consists in continuously varying the pendulumsuspension length depending on the phase state. The stability of various controlled motions, including the motions near the upper and lower equilibria, is studied. The Lyapunov functions that prove the asymptotic stability and instability of the pendulum lower position in the respective cases of the pendulum damping and excitation are constructed for the proposed control law. The influence of the viscous friction forces on the pendulum stable motions and the onset of stagnation regions in the case of its excitation is analyzed. The theoretical results are confirmed by graphical representation of the numerical results.  相似文献   

14.
干摩擦系统在基础位移冲击激励下的特性   总被引:2,自引:0,他引:2  
本文给出了具有软化弹簧特性的干摩擦隔振系统隔离基础位移冲击激励的理论分析和结果,分析结果表明干摩擦隔冲系统远优于线性阻尼系统,隔冲效果很明显.  相似文献   

15.
A rotated Froude pendulum with Coulomb-type friction, viscous damping and external harmonic excitation is studied. Melinkov's technique is applied to predict a homoclinic bifurcation, assuming that the unperturbed system possesses either two or four homoclinic orbits. Chaotic behavior predicted by the applied analytical approach has been confirmed by numerical simulations.  相似文献   

16.
The problem of a steady-state slip pulse of finite size between dissimilar materials is studied. It is shown that for a Coulomb friction law, there is a continuous set of possible solutions for any slip propagation velocity and any slip length. These solutions are, however, nonphysical because they show a singular behaviour of the slip velocity at one extremity of the pulse, which implies a crack-like behaviour. In order to regularize these solutions, we introduce a modified friction law due to Prakash and Clifton (Experimental Techniques in the Dynamics of Deformable Solids, Vol. AMD-165, pp. 33-48; J. Tribol. 120 (1998) 97), which consists in introducing in the Coulomb friction law a relaxation time for the response of the shear stress to a sudden variation of the normal stress. Then, we show that even for a slip velocity-dependent characteristic time, the degeneracy of the solutions is not suppressed and a physical pulse is not selected. This result shows the absence of steady state self-healing pulses within the modified friction law and is consistent with recent finite-difference calculations (J. Geophys. Res. 107 (2002) 10).  相似文献   

17.
We investigate analytically and experimentally the effects of Coulomb friction on the performance of centrifugal pendulum vibration absorbers (CPVAs), which are used to reduce torsional vibrations in rotating machinery. The analysis is based on perturbation methods applied to the nonlinear equations of motion for a rotor subjected to an engine order applied torque and equipped with a circular path CPVA with viscous and Coulomb damping. The experimental work is based on quantifying parameters for the damping model using free vibration measurements with a viscous and Coulomb damping identification scheme that is enhanced to better handle measurement noise, and running tests for steady-state operation under a range of loading conditions. The level of Coulomb damping is varied by adjusting the friction of the absorber connection bearing. Good agreement is found between the analytical predictions and the experimental data. It is shown that the absorber sticks up to a level of excitation that allows it to release, after which the Coulomb damping acts in the expected manner, resulting in lowered response amplitudes. The results obtained are of general use in assessing absorber performance when dry friction is present in absorber suspensions.  相似文献   

18.
In this work we analyse the possibility of energy harvesting from the vibration of the environment. The investigations are performed using experimental rig, which consists of a parametrically forced pendulum and an energy harvester, and the mathematical model developed based on the experimental rig. Numerical studies focus on the oscillating motion of pendulum in 2:1 resonance and show good agreement with experimental results. We present that the energy harvesting is possible and is more efficient for shorter reduced length of the pendulum, as proved numerically and experimentally.  相似文献   

19.
Switch-like behaviour in dynamical systems may be modelled by highly nonlinear functions, such as Hill functions or sigmoid functions, or alternatively by piecewise-smooth functions, such as step functions. Consistent modelling requires that piecewise-smooth and smooth dynamical systems have similar dynamics, but the conditions for such similarity are not well understood. Here we show that by smoothing out a piecewise-smooth system one may obtain dynamics that is inconsistent with the accepted wisdom — so-called Filippov dynamics — at a discontinuity, even in the piecewise-smooth limit. By subjecting the system to white noise, we show that these discrepancies can be understood in terms of potential wells that allow solutions to dwell at the discontinuity for long times. Moreover we show that spurious dynamics will revert to Filippov dynamics, with a small degree of stochasticity, when the noise magnitude is sufficiently large compared to the order of smoothing. We apply the results to a model of a dry-friction oscillator, where spurious dynamics (inconsistent with Filippov’s convention or with Coulomb’s model of friction) can account for different coefficients of static and kinetic friction, but under sufficient noise the system reverts to dynamics consistent with Filippov’s convention (and with Coulomb-like friction).  相似文献   

20.
We prove the existence of complex dynamics for a generalized pendulum type equation with variable length. The solutions we find switch from an oscillatory behavior around the stable vertical position to a rotational type behavior crossing the unstable position with positive or negative velocity following any prescribed two-sided sequence of symbols. Moreover, to any periodic sequence of symbols corresponds a periodic solution of the equation. The proof is based on a topological approach and the results are robust with respect to small perturbations. In particular a small friction term can be added to the equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号