首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The boundary value problem of the behavior of a viscoelastic half-space subjected to a surface shear stress pulse is solved in the linear formulation on the basis of dynamical correspondence principle. The medium occupying the half-space possesses the property of transverse isotropy. The exact solution of the problem is obtained using integral transforms. The solution is analyzed with reference to a Maxwell-Voigt model.Moscow Region. Translated from Mekhanika Polimerov, No. 5, pp. 933–937, September–October, 1969.  相似文献   

2.
Conclusion The effective elastic moduli and Poisson's ratios and the mean characteristics of the stress fields in the components of unidirectional fiber composites with a stochastic structure are nearly the same as the corresponding values calculated for a regular model of the composite. Relatively small increase (up to 6%) is seen in the transverse shear moduli with the transition from a regular structure to a stochastic structure. In the latter, there is a substantial increase in the stress concentration factor. Here, the difference between the stochastic structure and the regular structure increases with an increase in fiber stiffness and is particularly great (with a difference of two to three orders of magnitude) in the case of shear loading. The probability of the occurrence of microscopic fracture in the binder of the investigated materials is higher in transverse tension, but the difference from the results obtained for the regular models is more significant in the case of shear loading. Microscopic fracture nuclei will be formed in the matrix of the composite with the stochastic structure at considerably lower macroscopic stresses than are required for the regular structure.Translated from Mekhanika Kompozitnykh Materialov, No. 5, pp. 860–865, September–October, 1990.  相似文献   

3.
The bending characteristics of a composite panel with asymmetric layered structure under local surface loads are obtained. A refined version of the applied theory is developed using the analytical solution of the bending problem of a sandwich plate with arbitrary asymmetric structure under a point load. Local effects are investigated within the limits of a discrete model allowing for the specific character of elastic properties of a soft filler. The advantages of the solution are expressions of bending characteristics — layer curvatures, displacements, and stresses — in a closed form. It is shown that these characteristics can vary several times depending on the asymmetry parameters of the structure. Degeneration peculiarities of the solution, stemming from the slipping of layers or, otherwise, their rigid linking by the Kirchoff—Love hypothesis, as well as from account of the transverse shear and compression of the normal, are examined in line with the degeneration of geometric and physical parameters of the discrete model adopted. The results obtained are illustrated by curves and surfaces for the characteristics studied.Submitted for the 11th International Conference on the Mechanics of Composite Materials (Riga, June 11–15, 2000).Institute of Polymer Mechanics, Latvian University, Riga, LV-1006 Latvia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 6, pp. 717–742, November–December, 1999.  相似文献   

4.
A New Integrable Equation with Peakon Solutions   总被引:5,自引:0,他引:5  
We consider a new partial differential equation recently obtained by Degasperis and Procesi using the method of asymptotic integrability; this equation has a form similar to the Camassa–Holm shallow water wave equation. We prove the exact integrability of the new equation by constructing its Lax pair and explain its relation to a negative flow in the Kaup–Kupershmidt hierarchy via a reciprocal transformation. The infinite sequence of conserved quantities is derived together with a proposed bi-Hamiltonian structure. The equation admits exact solutions as a superposition of multipeakons, and we describe the integrable finite-dimensional peakon dynamics and compare it with the analogous results for Camassa–Holm peakons.  相似文献   

5.
The effect of the anisotropy of the mechanical and thermophysical characteristics of the reinforcement on the temperature stresses in unidirectional composites has been investigated. The stresses near fibers forming a regular structure in the transverse plane are estimated as a function of the thermoelastic properties of the components and the structure parameters.Moscow Power Engineering Institute. Translated from Mekhanika Polimerov, No. 4, pp. 728–731, July–August, 1974.  相似文献   

6.
A theoretical and experimental justification is provided for a method of determining the transverse tensile strength of composites on the basis of bending tests on a segment of a circular ring. Test data obtained by different methods are compared.Moscow Power Engineering Institute. Translated from Mekhanika Polimerov, No. 4, pp. 759–761, July–August, 1973.  相似文献   

7.
The author examines an approach to the construction of a theory of thermoelastic bending of arbitrarily reinforced shells and plates that takes into account the actual structure, the deformation characteristic, and the actual thermomechanical properties of the elements which make up the composite. The final equations are obtained with and without allowance for transverse shear strains. The problem of the thermoelastic bending of a thin, arbitrarily reinforced rectangular plate hinged at the edges, when transverse shear strains can be neglected, is considered as an example.Institute of Hydrodynamics, Siberian Division, Academy of Sciences of the USSR, Novosibirsk. Translated from Mekhanika Polimerov, No. 5, pp. 861–873, September–October, 1972.  相似文献   

8.
A theoretical study of the longevity of structures made of glassy plastics has been carried out. A scheme of mixed reserved regions with random inclusion of reserves was chosen as the starting model. It is assumed that the rates of introduction into and escape of elements from the structure are constant. An exact expression has been obtained for the law of distribution of longevities. Asymptotic expressions have been found for the distribution density and its numerical characteristics. It has been shown that the gamma distribution is a special case of the distribution obtained.Lenin Institute of Civil Aviation Engineers, Riga. Translated from Mekhanika Polimerov, No. 2, pp. 352–356, March–April, 1970.  相似文献   

9.
The load-carrying capacity of circular plates made of a fiber-reinforced composite and loaded with axisymmetric transverse forces under axisymmetric boundary conditions is investigated. The plates can be freely supported or clamped along their contour. To the known yield condition used, in the plane of main bending moments, there correspond irregular hexagons, which depend on the mechanical properties of composite constituents and some characteristic geometrical parameters. It is shown that, depending on the ratio of ultimate radial and circumferential bending moments, in the plastic state, the circular plates (the central part of the clamped plates) take the form of a cone or a frustum of cone. For each of the cases, the limit load is found, which is a function of the above-mentioned mechanical parameters. The statically allowable fields of bending moments and the corresponding allowable fields of deflection rates are determined. The solutions found are exact. Special cases for the freely supported plates are analyzed, and the results obtained are presented in the form of graphs.__________Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 2, pp. 177–192, March–April, 2005.  相似文献   

10.
The stress distribution in a rectangular plate of a multilayer composite material with a periodically curved structure under forced vibration is studied. It is assumed that the plate is hinge supported at opposite sides. The investigation is carried out within the exact three-dimensional linear theory of elasticity. The mechanical relationships of the plate material are described by the continuum theory of Akbarov and Guz'. The numerical results obtained by the finite element method show that even in low-frequency dynamic loading of the plate the extreme values of stresses, which appear as a result of the curving in the plate structure, considerably exceed those in the corresponding static loading.Institute of Mathematics and Mechanics, Academy of Sciences of Azerbaijan, Baku, Azerbaijan. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 4, pp. 447–454, July–August, 1999.  相似文献   

11.
The solution of the axisymmetric elasticity problem for an unparted hyperboloid of revolution is used to obtain the exact analytical solution of the reference problem of the thermally stressed state of an isotropic solid of revolution with finite dimensions and a transverse cross section of complex configuration.Kiev. Moscow. Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 21, pp. 3–9, 1990.  相似文献   

12.
This paper studies polyhedral methods for the quadratic assignment problem. Bounds on the objective value are obtained using mixed 0–1 linear representations that result from a reformulation–linearization technique (rlt). The rlt provides different “levels” of representations that give increasing strength. Prior studies have shown that even the weakest level-1 form yields very tight bounds, which in turn lead to improved solution methodologies. This paper focuses on implementing level-2. We compare level-2 with level-1 and other bounding mechanisms, in terms of both overall strength and ease of computation. In so doing, we extend earlier work on level-1 by implementing a Lagrangian relaxation that exploits block-diagonal structure present in the constraints. The bounds are embedded within an enumerative algorithm to devise an exact solution strategy. Our computer results are notable, exhibiting a dramatic reduction in nodes examined in the enumerative phase, and allowing for the exact solution of large instances.  相似文献   

13.
The stability of a cylindrical glass-reinforced plastic shell subjected to external pressure is considered in the geometrically nonlinear formulation with allowance for initial irregularities. The refined shell theory [6, 7], which enables transverse shear strains to be taken into account, is employed. A general algorithm of the solution has been written in ALGOL-60. A numerical solution of the problem has been obtained on a BÉSM-3M computer. Critical loads have been determined over a wide range of variation of the geometrical and physical parameters of the shell. It is established that the difference between the results of the classical and refined theories depends on the thickness, length, and physical parameters of the shell. The classical theory is asymptotically exact as the thickness of the shell tends to zero or the interlaminar shear modulus tends to infinity.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 5, pp. 857–862, September–October, 1969.  相似文献   

14.
In this paper, the qualitative behavior and exact travelling wave solutions of the Zhiber–Shabat equation are studied by using qualitative theory of polynomial differential system. The phase portraits of system are given under different parametric conditions. Some exact travelling wave solutions of the Zhiber–Shabat equation are obtained. The results presented in this paper improve the previous results.  相似文献   

15.
The effect of transverse shear strains on the critical pressure is investigated using the results of the solution obtained for the problem of the stability "in the small" of elastic multilayer cylindrical shells of regular structure with alternating light and stiff layers. Attention is drawn to the need to estimate the state of stress of the shells in the critical-load zone with the object of studying the desirability of taking the shear effect into account in the stability calculations. The results obtained can be used in calculating the stability of shells made from resin-based composites (glass-reinforced plastics, graphite-reinforced plastics, etc.). The numerical calculations were carried out using a computer.Translated from Mekhanika Polimerov, No. 6, pp. 1066–1070, November–December, 1973.  相似文献   

16.
A mathematical model for determining the effective elastic properties and describing the processes of inelastic deformation and damage accumulation of unidirectional fiber-reinforced composites with tetragonal and hexagonal structures is developed. A comparative analysis of the effective elastic moduli of glass, boron, organic, and carbon unidirectional plastics shows that, if the fiber volume fraction does not exceed 0.5, the effective elastic properties calculated by the models presented give closely related results. The calculation results for nonlinear fields of deformation and failure are presented and the limiting strength surfaces of fibrous glass plastics with hexagonal and tetragonal structures are obtained for different transverse loading paths. It is found that the structure of a composite affects significantly its strength properties.Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000).Perm' State Technical University, Perm', Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 455–464, July–August, 2000.  相似文献   

17.
Results of single transverse compression testing of PPTA and PIPD fibers, using a novel test device, are presented and discussed. In the tests, short lengths of single fibers are compressed between two parallel, stiff platens. The fiber elastic deformation is analyzed as a Hertzian contact problem. The inelastic deformation is analyzed by elastic-plastic FE simulation and by laser-scanning confocal microscopy of the compressed fibers ex post facto. The results obtained are compared to those in the literature and to the theoretical predictions of PPTA fiber transverse elasticity based on PPTA crystal elasticity.Presented at the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000).3TEX, Inc. 109, MacKenan Drive, Cary, North Carolina 27511, USA. Published in Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 533–544, March–April, 2000.  相似文献   

18.
The stability of shells coupled with an elastic Winkler foundation is investigated. It is assumed that the shell is made of a material (glass-reinforced plastic) with low resistance to shear, as a result of which generalized theories that take transverse shear strains into account [1–4] must be used in the stability calculations. The solution obtained is compared with the corresponding solution obtained on the basis of the classical Kirchhoff-Love theory [8].Lvov Polytechnic Institute. Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 4, pp. 669–673, July–August, 1969.  相似文献   

19.
The extended homogeneous balance method is used to construct exact traveling wave solutions of a generalized Hirota–Satsuma coupled KdV equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many exact traveling wave solutions of a generalized Hirota–Satsuma coupled KdV equation are successfully obtained, which contain soliton-like and periodic-like solutions This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations.  相似文献   

20.
Analysis of a second-approximation refined shear model for shallow layered composite shells and plates with a substantially inhomogeneous structure over the thickness is presented. The tangential displacements and corresponding normal stresses are expressed in the form of a polynomial of the fith degree in the transverse coordinate and contain squared rigidity characteristics. In this way, the accuracy of results and practical coincidence with the 3D solutions is ensured. Based on the refined model, a theory of shallow layered shells is developed. A system of resolving equations of sixteenth power together with appropriate boundary conditions was obtained and solved analytically. It is shown that the area of application of the formed model is extended as compared with the model of the first approximation. The model proposed allows us to examine the stress-strain state of layered composite structures of substantially different thickness and physical-mechanical characteristics of the layers, including the possibility of simulating relatively large shear deformations of rigid layers separated by a low-modulus thin interlayer pliable to transverse shear.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Ukrainian Transport University, Kiev, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 3, pp. 363–370, May–June, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号