首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a class C of subsets of a set X, let V(C) be the smallest n such that no n-element set F?X has all its subsets of the form AF, AC. The condition V(C) <+∞ has probabilistic implications. If any two-element subset A of X satisfies both AC = Ø and A ? D for some C, DC, then V(C)=2 if and only if C is linearly ordered by inclusion. If C is of the form C={∩ni=1 Ci:CiCi, i=1,2,…,n}, where each Ci is linearly ordered by inclusion, then V(C)?n+1. If H is an (n-1)-dimensional affine hyperplane in an n-dimensional vector space of real functions on X, and C is the collection of all sets {x: f(x)>0} for f in H, then V(C)=n.  相似文献   

2.
Let Lu be the integral operator defined by (Lk?)(x, y) = ∝ s ∝ ?(x′, y′)(eik??) dx′ dy′, (x, y) ? S where S is the interior of a smooth, closed Jordan curve in the plane, k is a complex number with Re k ? 0, Im k ? 0, and ?2 = (x ?x′)2 + (y ? y′)2. We define q(x, y) = [dist((x, y), ?S)]12, (x, y) ? S; L2(q, S) = {? : ∝ s ∝ ¦ ?(x, y)¦2 q(x, y) dx dy < ∞}; W21(q, S) = {? : ? ? L2(q, S), ???x, ?f?y ? L2(q, S)}, where in the definition of W21(q, S) the derivatives are taken in the sense of distributions. We prove that Lk is a continuous 1-l mapping of L2(q, S) onto W21(q, S).  相似文献   

3.
4.
Let q be an odd prime power, and suppose q?1 (mod8), Let C(q) and C(q)1 be the two extended binary quadratic residue codes (QR codes) of length q+1, and let
T(q)={(a+x;b+x;a+b+x):a,b∈C(q),x∈C(q)1}
. We establish a square root bound on the minimum weight in T(q). Since the same type of bound applies to C(q) and C(q)1, this is a good method of combining codes.  相似文献   

5.
Let p, q be arbitrary parameter sets, and let H be a Hilbert space. We say that x = (xi)i?q, xi ? H, is a bounded operator-forming vector (?HFq) if the Gram matrixx, x〉 = [(xi, xj)]i?q,j?q is the matrix of a bounded (necessarily ≥ 0) operator on lq2, the Hilbert space of square-summable complex-valued functions on q. Let A be p × q, i.e., let A be a linear operator from lq2 to lp2. Then exists a linear operator ǎ from (the Banach space) HFq to HFp on D(A) = {x:x ? HFq, A〈x, x〉12 is p × q bounded on lq2} such that y = ǎx satisfies yj?σ(x) = {space spanned by the xi}, 〈y, x〉 = Ax, x〉 and 〈y, y〉 = A〈x, x〉12(A〈x, x〉12)1. This is a generalization of our earlier [J. Multivariate Anal.4 (1974), 166–209; 6 (1976), 538–571] results for the case of a spectral measure concentrated on one point. We apply these tools to investigate q-variate wide-sense Markov processes.  相似文献   

6.
Nonlinear partial differential operators G: W1,p(Ω) → Lq(Ω) (1 ? p, q ∞) having the form G(u) = g(u, D1u,…, DNu), with g?C(R × RN), are here shown to be precisely those operators which are local, (locally) uniformly continuous on, W1,∞(Ω), and (roughly speaking) translation invariant. It is also shown that all such partial differential operators are necessarily bounded and continuous with respect to the norm topologies of W1,p(Ω) and Lq(Ω).  相似文献   

7.
We consider the equation −Δu+V(x)u=f(x,u) for x∈R2 where V:R2R is a positive potential bounded away from zero, and the nonlinearity f:R2×RR behaves like exp(α|u|2) as |u|→∞. We also assume that the potential V(x) and the nonlinearity f(x,u) are asymptotically periodic at infinity. We prove the existence of at least one weak positive solution u∈H1(R2) by combining the mountain-pass theorem with Trudinger–Moser inequality and a version of a result due to Lions for critical growth in R2.  相似文献   

8.
Let Cn×n and Hn denote respectively the space of n×n complex matrices and the real space of n×n hermitian matrices. Let p,q,n be positive integers such that p?q?n. For A?Cn×n, the (p,q)-numerical range of A is the set
Wp,q(A)={trCp(JqUAU1):U unitary}
, where Cp(X) is the pth compound matrix of X, and Jq is the matrix Iq?On-q. Let L denote Hn or Cn×n. The problem of determining all linear operators T: LL such that
Wp,q(T(A))=Wp,q(A) for all A?L
is treated in this paper.  相似文献   

9.
A construction is given for difference sets in certain non-cyclic groups with the parameters v = qs+1{[(qs+1 ? 1)(q ? 1)] + 1}, k = qs(qs+1 ? 1)(q ? 1), λ = qs(qs ? 1)(q ? 1), n = q2s for every prime power q and every positive integer s. If qs is odd, the construction yields at least 12(qs + 1) inequivalent difference sets in the same group. For q = 5, s = 2 a difference set is obtained with the parameters (v, k, λ, n) = (4000, 775, 150, 625), which has minus one as a multiplier.  相似文献   

10.
11.
For an open set Ω ? RN, 1 ? p ? ∞ and λ ∈ R+, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm (cf. A. Pietsch, “r-nukleare Sobol. Einbett. Oper., Ellipt. Dgln. II,” Akademie-Verlag, Berlin, 1971, pp. 203–215). Choose a Banach ideal of operators U, 1 ? p, q ? ∞ and a quasibounded domain Ω ? RN. Theorem 1 of the note gives sufficient conditions on λ such that the Sobolev-imbedding map W?pλ(Ω) λ Lq(Ω) exists and belongs to the given Banach ideal U: Assume the quasibounded domain fulfills condition Ckl for some l > 0 and 1 ? k ? N. Roughly this means that the distance of any x ? Ω to the boundary ?Ω tends to zero as O(¦ x ¦?l) for ¦ x ¦ → ∞, and that the boundary consists of sufficiently smooth ?(N ? k)-dimensional manifolds. Take, furthermore, 1 ? p, q ? ∞, p > k. Then, if μ, ν are real positive numbers with λ = μ + v ∈ N, μ > λ S(U; p,q:N) and v > N/l · λD(U;p,q), one has that W?pλ(Ω) λ Lq(Ω) belongs to the Banach ideal U. Here λD(U;p,q;N)∈R+ and λS(U;p,q;N)∈R+ are the D-limit order and S-limit order of the ideal U, introduced by Pietsch in the above mentioned paper. These limit orders may be computed by estimating the ideal norms of the identity mappings lpnlqn for n → ∞. Theorem 1 in this way generalizes results of R. A. Adams and C. Clark for the ideals of compact resp. Hilbert-Schmidt operators (p = q = 2) as well as results on imbeddings over bounded domains.Similar results over general unbounded domains are indicated for weighted Sobolev spaces.As an application, in Theorem 2 an estimate is given for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω fulfills condition C1l.For an open set Ω in RN, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm, see below. Taking a fixed Banach ideal of operators and 1 ? p, q ? ∞, we consider quasibounded domains Ω in RN and give sufficient conditions on λ such that the Sobolev imbedding operator W?pλ(Ω) λ Lq(Ω) exists and belongs to the Banach ideal. This generalizes results of C. Clark and R. A. Adams for compact, respectively, Hilbert-Schmidt operators (p = q = 2) to general Banach ideals of operators, as well as results on imbeddings over bounded domains. Similar results over general unbounded domains may be proved for weighted Sobolev spaces. As an application, we give an estimate for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω is a quasibounded open set in RN.  相似文献   

12.
Let q=1,…,n?1 and D be a bounded convex domain in Cn of finite type m. We construct two integral operators Tq and Tq such that for all p∈N,Tq,Tq:Cp0,q(bD)→Cp+1/m0,q?1(bD) are continuous, and for all (0,q)-forms h continuous on bD with ?bh continuous on bD too, with the additional hypothesis when q=n?1 that ∫bDhφ=0 for all φCn,0(bD) ??b-fermée, we show h=??b(Tq?Tq)h+(Tq+1?Tq+1)??bh. For this construction, we use the Diederich–Fornæss support function of Alexandre (Publ. IRMA Lille 54 (III) (2001)). To prove the continuity of Tq, we integrate by parts and take care of the tangential derivatives. The normal component in z of the kernel of Tq will have a bad behaviour, so, in order to find a good representative of its equivalence class, we isolate the tangential component of the kernel and then integrate by parts again. To cite this article: W. Alexandre, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

13.
14.
In a recent paper [3] the authors derived maximum principles which involved u(x) and q = ¦grad, where u(x) is a classical solution of an alliptic differential equation of the form (g(q2)u,i),i + ?(u) ?(q2) = 0. In this paper these results are extended to the more general case in which g = g(u, q2) and ?(u) ?(q2) is replaced by h(u, q2).  相似文献   

15.
Let Γ be an algebraic curve which is given by an equation f(x, y) = 0, f(x, y) ∈ k[x, y] where k is an algebraic number field and f(x, y) is irreducible. Suppose that there exists an 1Γ a nonstandard point (ξ, η) ∈ 1k × 1k. Then k(ξ, η) is (isomorphic to) the algebraic function field of Γ and, at the same time, is a subfield of 1k. Correlating the divisors of the function field k(ξ, η) and of the number field 1k, we develop an analogue of the Artin-Whaples theory of the product formula. This leads to one of Siegel's basic inequalities for rational points on algebraic curves.  相似文献   

16.
We are interested in finding Sobolev functions with “large” singular sets. Given N,k∈N, 1<p<∞, kp<N, for any compact subset A of RN, such that its upper box dimension is less than N?kp, we construct a Sobolev function u∈Wk,p(RN) which is singular precisely on A. We introduce the notions of lower and upper singular dimensions of Sobolev space, and show that both are equal to N?kp. To cite this article: D. ?ubrini?, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 539–544.  相似文献   

17.
Ck estimates for convex domains of finite type in Cn are known from Alexandre (C. R. Acad. Paris, Ser. I 335 (2002) 23–26). We now want to show the same result for annuli. Precisely, we show that for all convex domains D and D′ relatively compact of Cn, of finite type m and m′ such that D?D′, for all q=1,…,n?2, there exists a linear operator T1q from C0,q(D′?D) to C0,q?1(D′?D) such that for all k∈N and all (0,q)-form f, ??-closed of regularity Ck up to the boundary, T1qf is of regularity Ck+1/max(m,m′) up to the boundary and ??Tq1f=f. We fit the method of Diederich, Fisher and Fornaess to the annuli by switching z and ζ. However, the integration kernel will not have the same behavior on the frontier as in the Diederich–Fischer–Fornaess case and we have to alter the Diederich–Fornaess support function which will not be holomorphic anymore. Also, we take care of the so generated residual term in the homotopy formula and show that it is extremely regular so that solve the ?? problem for it will not be difficult. To cite this article: W. Alexandre, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

18.
19.
If A and B are C1-algebras there is, in general, a multiplicity of C1-norms on their algebraic tensor product AB, including maximal and minimal norms ν and α, respectively. A is said to be nuclear if α and ν coincide, for arbitrary B. The earliest example, due to Takesaki [11], of a nonnuclear C1-algebra was Cl1(F2), the C1-algebra generated by the left regular representation of the free group on two generators F2. It is shown here that W1-algebras, with the exception of certain finite type I's, are nonnuclear.If C1(F2) is the group C1-algebra of F2, there is a canonical homomorphism λl of C1(F2) onto Cl1(F2). The principal result of this paper is that there is a norm ζ on Cl1(F2) ⊙ Cl1(F2), distinct from α, relative to which the homomorphism λ ⊙ λl: C1(F2) ⊙ C1(F2) → Cl1(F2) ⊙ Cl1(F2) is bounded (C1(F2) ⊙ C1(F2) being endowed with the norm α). Thus quotients do not, in general, respect the norm α; a consequence of this is that the set of ideals of the α-tensor product of C1-algebras A and B may properly contain the set of product ideals {I ? B + A ? J: I ? A, J ? B}.Let A and B be C1-algebras. If A or B is a W1-algebra there are on AB certain C1-norms, defined recently by Effros and Lance [3], the definitions of which take account of normality. In the final section of the paper it is shown by example that these norms, with α and ν, can be mutually distinct.  相似文献   

20.
Let {Xt, t ≥ 0} be Brownian motion in Rd (d ≥ 1). Let D be a bounded domain in Rd with C2 boundary, ?D, and let q be a continuous (if d = 1), Hölder continuous (if d ≥ 2) function in D?. If the Feynman-Kac “gauge” Ex{exp(∝0τDq(Xt)dt)1A(XτD)}, where τD is the first exit time from D, is finite for some non-empty open set A on ?D and some x?D, then for any ? ? C0(?D), φ(x) = Ex{exp(∝0τDq(Xt)dt)?(XτD)} is the unique solution in C2(D) ∩ C0(D?) of the Schrödinger boundary value problem (12Δ + q)φ = 0 in D, φ = ? on ?D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号